Online Coupled Meteorology and Chemistry Models in the U.S.

Yang Zhang

North Carolina State University

The COST-728/NetFAM Workshop on Integrated Systems of Meso-Meteorological and Chemical Transport Models, Copenhagen, Denmark, May 21-23, 2007

Outline

Background

- Important feedbacks between meteorology/climate and air quality
- History and current status of online models

• Review of Several Online Models in the U.S.

- <u>GATOR/GCMOM</u> Gas, Aerosol, TranspOrt, Radiation, General Circulation, Mesoscale, Ocean Model
- WRF/Chem Weather Research and Forecast with Chem
- <u>CAM3</u> Community Atmospheric Model v. 3
- <u>MIRAGE2</u> Model for Integrated Research on Atmospheric Global Exchanges v. 2

Applications of Online Models

- <u>GATOR/GCMOM</u>
 - CA aerosol/climate modeling
- WRF/Chem
 - CONUS and TeXAQS air quality
- <u>CAM3/MIRAGE</u>
 - Global aerosol indirect effect

Major Challenges and Future Directions

One Atmosphere Gases, Aerosols, Chemistry, Transport, Radiation, Climate

2007 IPCC Estimate of Gas and Aerosol Radiative Effects

Radiative Forcing Components

RF Terms RF values (W m⁻²) Spatial scale LOSU CO. 1.66 [1.49 to 1.83] Global High Long-lived N₂O greenhouse gases 0.48 [0.43 to 0.53] 0.16 [0.14 to 0.18] Global CH, Halocarbons High 0.34 [0.31 to 0.37] -0.05 [-0.15 to 0.05] Continental Stratospheric H - Tropospheric Med Ozone to global 0.35 [0.25 to 0.65] Anthropogenic Stratospheric water 0.07 [0.02 to 0.12] Global Low vapour from CH₄ -0.2 [-0.4 to 0.0] Med Land use H Local to Surface albedo Black carbon continental - Low 0.1 [0.0 to 0.2] on snow Continental Med ©IPCC 2007: WG1-AR4 -0.5 [-0.9 to -0.1] Direct effect to global - Low Total Aerosol Cloud albedo Continental -0.7 [-1.8 to -0.3] Low effect to global 0.01 [0.003 to 0.03] Linear contrails Continental Low Natural Solar irradiance Global 0.12 [0.06 to 0.30] Low Total net 1.6 [0.6 to 2.4] anthropogenic -1 -2 0 2 Radiative Forcing (W m⁻²)

Examples of Important Feedbacks

- Effects of Meteorology and Climate on Gases and Aerosols
 - Changes in temperature, humidity, and precipitation directly affect species conc.
 - The cooling of the stratosphere due to the accumulation of GHGs affects lifetimes
 - Changes in tropospheric vertical temperature structure affect transport of species
 - Changes in vegetation alter dry deposition and emission rates of biogenic species
 - Climate changes alter biological sources and sinks of radiatively active species
- Effects of Gases and Aerosols on Meteorology and Climate
 - Decrease net downward solar/thermal-IR radiation and photolysis (direct effect)
 - Affect PBL meteorology (decrease near-surface air temperature, wind speed, and cloud cover and increase RH and atmospheric stability) (semi-direct effect)
 - Aerosols serve as CCN, reduce drop size and increase drop number, reflectivity, and optical depth of low level clouds (LLC) (the Twomey or first indirect effect)
 - Aerosols increase liquid water content, fractional cloudiness, and lifetime of LLC but suppress precipitation (the second indirect effect)

Coupling Air Quality and Meteorology/Climate Modeling Rationale and Motivation

- Common deficiencies of a global climate-aerosol model
 - Coarse spatial resolution cannot explicitly capture the fine-scale structure that characterizes climatic changes (e.g., clouds, precipitation, mesoscale circulation, sub-grid convective system, etc.) and air quality responses
 - Coarse time resolution cannot replicate variations at smaller scales (e.g., hourly, daily, diurnal)
 - Simplified treatments (e.g., simple met. schemes and chem./aero. treatments) cannot represent intricate relationships among meteorology/climate/AQ variables
 - Most models simulate climate and aerosols offline with inconsistencies in transport and no climate-chemistry-aerosol-cloud-radiation feedbacks

• Common deficiencies of a urban/regional climate or AQ model

- Most AQMs do not treat aerosol direct and indirect effects
- Most AQMs use offline meteorological fields without feedbacks
- Some AQMs are driven by a global model with inconsistent model physics
- Most regional climate models use prescribed aerosols or simple modules without detailed chemistry and microphysics

Coupling Air Quality and Meteorology/Climate Modeling History and Current Status

- Prior to 1994: Separation of air quality, meteorology, climate
 1994-Present: Offline and online coupling
 - » Urban/Regional Models
 - » The first fully-coupled meteorology/chemistry/aerosol/radiation model, GATOR-MMTD, was developed by Jacobson in 1994
 - » The first community coupled meteorology/chemistry/aerosol/radiation model, WRF/Chem, was developed by Grell et al. in 2002
 - » Most air quality models (AQMs) are still offline
 - » Most AQMs do not treat aerosol direct and indirect effects
 - » Most regional climate models use prescribed aerosols or simple modules without detailed aerosol chemistry and microphysics
 - » Global Models
 - » The first nested global-through-urban scale fully-coupled model, GATOR-GCMM, was developed by Jacobson in 2001
 - » Most global AQMs (GAQMs) are still offline
 - » Most GAQMs use an empirical sulfate-CCN relation for indirect effects

Fully Coupled Online Models Model System and Application

Model System/Scale	Met. Model	Chemical Transport Model	Typical Applications	Example References
GATOR-GCMOM & Predecessors (Global-through- urban)	MMTD GCMM GCMOM	CBM-EX: (247 rxns, 115 species); size-resolved, prognostic aerosol/cloud with complex processes	Current/future met/ chem/rad feedbacks; Direct/indirect effects; AQ/health effect	Jacobson, 1994, 1997a, b, 2001, 2002, 2004; Jacobson et al., 2004, 2006, 2007
WRF/Chem (Mesoscale)	WRF	RADM2, RACM, CBMZ, CB05 (156-237 rxns, 52-77 species); Size/mode-resolved, prognostic aerosol/cloud	Forecast/hindcast, Met/chem feedbacks; O ₃ , PM _{2.5} ; Aerosol direct effect	Grell et al. (2005), Fast et al. (2006), McQueen et al. (2005, 2007)
CAM3 & Predecessors (Global)	CCM3/ CCM2/ CCM1	Prescribed CH ₄ , N ₂ O, CFCs/MOZART4 (167 rxns, 63 species); Prognostic aerosol/cloud with prescribed size	Climate; Direct/indirect effects; Hydrological cycle	Collins et al., 2004, 2006; Rasch et al., 2006
MIRAGE2 & 1 (Global)	CAM2/ CCM2	CO-CH ₄ -oxidant chem.; Mode-resolved simple aerosol treatment; Prognostic aerosol/cloud	Trace gases and PM; Direct/indirect effects	Ghan et al., 2001a,b, Zhang et al., 2002; Easter et al., 2004;

Fully Coupled Online Models Aerosol Properties

Model System	Composition	Size Distribution	Aerosol Mass/Number	Aerosol Mixing State
GATOR- GCMOM	47 species (sulfate, nitrate, ammonium, BC, OC, sea-salt, dust, crustal)	Sectional (17-30): variable, multiple size distributions	Predicted/Predicted	A coated core, internal/external mixtures
WRF/ Chem	Sulfate, nitrate, ammonium, BC, OC, sea-salt	Modal (3): variable (MADE/SORGAM) Sectional (8): variable (MOSAIC/MADRID) single size distribution	Predicted/Diagnosed from mass or predicted	Internal
CAM3	Sulfate, nitrate, ammonium, BC, OC, sea-salt, dust	Modal (4): predicted dust and sea-salt, prescribed other aerosols; single size distribution	Prescribed or predicted/Diagnosed from mass	External
MIRAGE2	Sulfate, BC, OC, sea- salt, dust	Modal (4): variable; single size distribution	Prescribed or predicted/Diagnosed or predicted	Externally mixed modes with internal mixtures within each mode

Fully Coupled Online Models Aerosol/Cloud Properties

Model System	Aerosol Hygroscopicity	Aerosol radiative properties	Cloud droplet number	Hydrometeor types in clouds
GATOR- GCMOM	Simulated hydrophobic-to- hydrophilic conversion for all aerosol components	Simulated volume- average refractive indices and optical properties based on core-shell MIE theory	Prognostic, size- and composition- dependent from multiple aerosol size distributions	Size-resolved liquid, ice, graupel, aerosol core components
WRF/ Chem	The same as MIRAGE2	The same as MIRAGE2	The same as MIRAGE2 (MOSAIC)	Bulk single condensate
CAM3	simulated hydrophobic and hydrophilic BC/OC with a fixed conversion rate	Prescribed RI and optical properties, for external mixtures	The same as MIRAGE2	Bulk liquid, ice water
MIRAGE2	Simulated BC/OC with prescribed hygroscopicities	Parameterized RI and optical properties based on wet radius and RI of each mode	Prognostic, size- and composition- dependent, parameterized	Bulk single condensate

Fully Coupled Online Models Cloud Properties

Model System	Cloud droplet size distri.	CCN/IDN composition	CCN/IDN spectrum	Cloud radiative properties
GATOR- GCMOM	Prognostic, sectional (30), multiple size distributions (3)	All types of aerosols treated for both CCN/IDN	Predicted with Köhler theory; sectional (13- 17); multiple size distributions (1-16) for both CCN/IDN	Simulated volume-average refractive indices and optical properties based on MIE theory and a dynamic effective medium approximation
WRF/ Chem	Prognostic, sectional, single size distribution (MOSAIC)	The same as MIRAGE2 but sectional; CCN only	The same as MIRAGE2 but sectional, CCN only	The same as MIRAGE2 but sectional (MOSAIC)
CAM3	The same as MIRAGE2	All treated species except hydrophobic species; CCN only	Prescribed; CCN only	The same as MIRAGE2
MIRAGE2	Prescribed, modal, single size distribution	All treated species; CCN only	Function of aerosol size and hygroscopicity based on Köhler theory; CCN only	Prognostic, parameterized in terms of cloud water, ice mass, and number

Fully Coupled Online Models Aerosol Chemistry and Microphysics

Model System	Inorganic aero. thermo- dyn. equili.	Secondary organic aero. formation	New Particle Formation	Condensation of Gases on aerosols
GATOR- GCMOM	EQUISOLV II, major inorganic salts and crustal species	Condensation; Dissolution based on Henry's law (10-40 classes VOCs)	Binary homogeneous nucleation of H ₂ SO ₄ and H ₂ O, T- and RH- dependent	Dynamic condensation of all condensible species based on growth law (e.g., H_2SO_4 , VOCs)
WRF/ Chem	MARS-A (SORGAM) MESA-MTEM (MOSAIC) ISORROPIA (MADRID)	Reversible absorption (8 classes VOCs) based on smog-chamber data	Binary homogeneous nucleation of H ₂ SO ₄ and H ₂ O; T- and RH- dependent; sectional; different eqs. in different aero module	Dynamic condensation of H ₂ SO ₄ and VOCs (SORGAM), H ₂ SO ₄ and MSA(MOSAIC), and inorganic species (MADRID)
CAM3	MOZART4 with regime equili. for sulfate, ammonium and nitrate	Prescribed SOA yield for α-pinene, n- butane, and toluene	None	Instantaneous condensation of inorganic species
MIRAGE2	Simple equilibrium involving (NH ₄) ₂ SO ₄ and precursor gases	Prescribed SOA yield	Binary homogeneous nucleation of H_2SO_4 and H_2O ; T- and RH- dependent	Dynamic condensation of H_2SO_4 and MSA based on Fuchs and Sutugin growth law

Fully Coupled Online Models Aerosol Chemistry and Microphysics

Model System	Coagulation	Gas/particle mass transfer	Aqueous chemistry	Aerosol activation aero-CCN/IDN
GATOR- GCMOM	Sectional, multiple size distributions, accounts for van der Waals and viscous forces, and fractal geometry	Dynamic approach with a long time step (150-300 s) (PNG- EQUISOLV II) for all treated species	Bulk or size-resolved sulfate, nitrate, organics, chlorine, oxidant, radical chemistry (64 kinetic rxns)	Mechanistic, size- and composition-resolved CCN/IDN based on Köhler theory
WRF/ Chem	Modal/Sectional, single size distribution, fine- mode only	 Full equili. Dynamic Hybrid 	Bulk RADM chemistry (MADE/SORGAM) Bulk CMU mechanism (MOSAIC/MADRID)	The same as MIRAGE2 but sectional (MOSAIC)
CAM3	None	Full equilibrium involving (NH ₄) ₂ SO ₄ and NH ₄ NO ₃	Bulk sulfate chemistry (3 kinetic rxns)	Empirical, prescribed activated mass fraction; bulk CCN only
MIRAGE	Modal, single size distribution, fine- mode only	Simple equilibrium involving (NH ₄) ₂ SO ₄ and precursor gases	Bulk sulfate chemistry (3 kinetic rxns)	Mechanistic, parameterized activation based on Köhler theory; bulk CCN only

Fully Coupled Online Models Aerosol/Cloud Microphysics

Model System	Water uptake	In-cloud Scavenging	Below-cloud Scavenging	Droplet Sedimentation
GATOR- GCMOM	Equilibrium with RH; ZSR equation; simulated MDRH; Hysteresis is treated	Aerosol activation Nucl. Scavenging (rainout) precip. rate dependent of aerosol size and composition	Aerosol- hydrometeor coag. (washout), precip. rate dependent of aerosol size and composition	size-dependent sedimentation
WRF/ Chem	The same as MIRAGE2 but sectional	The same as MIRAGE2 but sectional	The same as MIRAGE2 but sectional	The same as MIRAGE2
CAM3	For external mixtures only, equilibrium with RH, no hysteresis	Prescribed activation, autoconversion, precip. rate independent of aerosols	Prescribed scav. efficiency, no-size dependence	size-dependent sedimentation
MIRAGE2	Equilibrium with RH, Hysteresis is treated	Activation, Brownian diffusion (inters./activated), autoconversion, nucleation scavenging, precip. rate independent of aerosols	Prescribed scavenging efficiency with size dependence	no droplet sedimentation

GATOR/GCMOM: Nested Model Grids (courtesy by Mark Jacobson, Stanford University)

California Climate Modeling

Baseline

Feb./Aug., 1999 Gas+PM Sensitivity

Remove all anthropogenic aerosol and precursor gas emissions (AAPPG)

Removed emissions

BC, OC, sulfate, nitrate, dust SO_x , NO_x , NH_3 , ROGs

Global Grid: 4°-SN × 5°-WE California Grid: 0.2° × 0.15°, ~21.5 km × 14.0 km South Coast Air Basin Grid: 0.045° × 0.05°, ~4.7 km × 5 km

Feb. and Aug. Down-Up Surface Solar Radiation Dif. w-w/o AAPPG (courtesy by Mark Jacobson, Stanford University)

Aerosols decrease surface solar radiation

Feb. and Aug. Temperature Differences w-w/o AAPPG (courtesy by Mark Jacobson, Stanford University)

Feb. and Aug. Water Vapor Differences w-w/o AAPPG (courtesy by Mark Jacobson, Stanford University)

Cooling and stability due to aerosols suppress evaporation

Feb. and Aug. 60-170 Wind Speed Differences w-w/o AAPPG (courtesy by Mark Jacobson, Stanford University)

Modeled Feb. Cloud Optical Depth Base and Diff. w-w/o AAPPG (Courtesy by Mark Jacobson, Stanford University)

Aerosols increase cloud optical depths

Feb. Precipitation Baseline and Differences (courtesy by Mark Jacobson, Stanford University)

Aerosols decrease precipitation

WRF/Chem-MADRID Model Configurations

July 1-7 2001 CONUS

- Horizontal resolution: 36 km (148 × 112)
- Vertical resolution:
 - MM5 (L34), CMAQ (L14)
 - WRF/Chem (L34)
- Emissions:
 - SMOKE: US EPA NEI'99 (v3)
- Initial and boundary conditions:
 - The same ICs/BCs for WRF/ MM5 and for CMAQ and WRF/Chem
- Gas-phase chemical mechanism:
 - **CMAQ: CB05**
 - WRF/Chem: CB05 or CBMZ
- **Data for model evaluation:**
 - CASTNet and SEARCH

Aug. 28-Sept. 2, 2000 TeXAQS

- Horizontal resolution: 12 km (88 × 88)
- Vertical grid spacing: L57, 15-m at L1
- Emissions
 - Gases from TCEQ
 - PM based on EPA's NEI'99 V. 3 + online s.s.
- Initial/boundary conditions
 - 3-hr N. Amer. reg. reanal. for met.
 - Horizontally homogeneous ICs
- Gas-phase chemical mechanism: CBMZ
- Data for model evaluation
 - CASTNet, IMPROVE, AIRS, STN, TeXAQS

Offline MM5/CMAQ vs. Online WRF/Chem Differences in Meteorology and Gas-Phase Chemistry

MM5/CMAQ-CB05

WRF/Chem-CB05

Weekly Mean Max 1-hr Average O3 (CASTNet)

	Cr	RMSE	NMB
MM5/CMAQ- CB05	0.59	11.5	13%
WRF/Chem- CB05	0.32	17.0	9%
WRF/Chem- CBMZ	0.35	16.2	8%

WRF/Chem-CBMZ

Simulated vs. Observed Meteorological Variables JST (Urban) YRK (Rural)

Simulated vs. Observed Mixing Ratios JST (Urban) YRK (Rural)

WRF/Chem-MADRID-CBMZ Effects of Aerosols on Meteorology and Radiation

2-m Temp (-20% to 10%)

SW Radiation (-20 to 20%)

2-m Water Vapor (-10% to 10%)

WRF/Chem-MADRID-CBMZ Feedbacks of Aerosols to T and Q_v at LaPorte, TX

(Gas+PM - Gas only)

 PM_{25}

Diff > 0, T(Q_v) increases (decreases) due to aerosol feedbacks Diff < 0, T(Q_v) decreases (increases) due to aerosol feedbacks

WRF/Chem-MADRID-CBMZ Feedbacks of Aerosols to NO₂ Photolysis and Radiation

NO₂ Photolysis

Single Scattering Albedo

LW Radiative Forcing

SW Radiative Forcing

CAM3 vs. MIRAGE2 Estimating Direct and Indirect Effects

- Simulations by CAM3 and MIRAGE
 - MIRAGE: PNNL aerosol physics applied to CAM2
 - CAM: MOZART/Rasch aerosol applied to CAM3
 - Droplet number influences droplet effective radius.
 - Dependence of autoconversion on droplet number is neglected
- Model Configurations
 - 4[•] latitude × 5[•] longitude × 26 layers
 - 3-year simulation after 4-month spinup
- Estimating Direct and Indirect Effects
 - Simulations with, w/out anthropogenic sulfate
 - Each simulation calculates radiative fluxes with (F_{aer}) and without any aerosols (F_{noaer}) .
 - Direct effect of all aerosols in a simulation is

$$\mathbf{F}_{direct} = \mathbf{F}_{aer} - \mathbf{F}_{noaer}$$

– Difference between simulations is Δ . Then

$$\Delta \mathbf{F}_{direct} = \Delta \mathbf{F}_{aer} - \Delta \mathbf{F}_{noaer}$$
$$\Delta \mathbf{F}_{indirect} = \Delta \mathbf{F}_{aer} - \Delta \mathbf{F}_{direct}$$
$$= \Delta \mathbf{F}_{noaer}$$

CAM3 vs. MIRAGE2 First Indirect Effect (courtesy by Steve Ghan, PNNL)

First Indirect Effect Anthropogenic Sulfur

Coupling Air Quality and Meteorology/Climate Modeling Major Challenges and Future Directions

- **Represent climate-aerosol-chemistry-cloud-radiation feedbacks**
 - Two-way/chain effects, size-/comp-resolved, multiple sizes, and subgrid variability
 - Real-time emissions, new particle formation, SOA, and aerosol/cloud interaction
- Represent complexity within the computational constraint
 - Development of benchmark model and simulation
 - Characterization of model biases, uncertainties, and sensitivity
 - Develop bias-correction techniques (e.g., chemical data assimilation)
 - Optimization/parameterization of model algorithms with acceptable accuracy
- Develop unified global-through-urban modeling system
 - Globalization/downscaling with consistent model physics
 - Two-way nesting with mass conservation and consistency
- Integrate model evaluation and improvement
 - Laboratory/field studies to improve understanding of major properties/processes
 - Real-time data (e.g., AirNow and Satellite) for data assimilation/model evaluation
 - Development of process-oriented models to isolate complex feedbacks

Coupling Air Quality and Meteorology/Climate Modeling Ongoing/Near Future Activities

• WRF/Chem

- NCAR/NOAA/PNNL/NCSU Mesoscale versions
- BAMS WRF/Chem-SMOKE
- NCSU global-through-urban WRF/Chem

• CAM3/CAM4

- NCAR global version with MOZART4 aerosol module
- PNNL global version with MIRAGE2 aerosol module
- NCAR downscaling and coupling with WRF/Chem
- Other Online Models
 - EPA: WRF/CMAQ
 - Illinois State Water Survey/UIUC: CWRF/Chem (MOZART4+CMAQ)
 - UC Davis: WRF/PMSO (Source-Oriented PM module)

Acknowledgments

- Ongoing project sponsors: NSF, NOAA, and EPA
- Steve Ghan and Richard Easter, PNNL and Mark Jacobson, Stanford University for courtesy slides
- Georg Grell, Steve Peckham, and Stuart McKeen, NOAA/ESRL, for providing NOAA/ESRL's WRF/Chem
- Jerome Fast, Richard Easter, Rahul Zaveri, PNNL, for providing PNNL's version of WRF/Chem
- Ken Schere, Golam Sarwar, and Tanya Otte, U.S. NOAA/AMD, for providing CB05 and inputs for MM5/CMAQ-CB05 and WRF July 2001 episode