

COSMO LM-ART Aerosols and Reactive Trace Gases within LM

Dominique Bäumer Max Bangert Kristina Lundgren Rayk Rinke Tanja Stanelle Bernhard Vogel <u>Heike Vogel</u>

IELMHOLTZ

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

Questions

- Interaction aerosol and regional climate (e.g. secondary circulations, mineral dust and monsoon)
- Interaction aerosol and gas phase
- Parameterization of both processes for global scale models
- Modelling of the visibility and AOD
- Dispersion of pollen

COSMO LM – ART (ART = Aerosols and Reactive Trace Gases)

Concept:

LM-ART is online coupled.

Identical methods are applied for all scalars as temperature, humidity, and concentrations of gases and aerosols to calculate the transport processes.

It has a modular structure.

Therefore LM-ART can easily be used in the forecast mode.

www-imk.fzk.de/tro/ACP/

Parameterizations of the Photolysis Frequencies

Treatment of the Aerosol Particles

Three modes for mineral dust particles + three modes for sea salt particles + pollen

Optical Properties of the Aerosols

Parameterization of the Dust Emissions

Parameterization of the horizontal and vertical saltation and emission flux (Vogel et al, 2006)

3 different Modes (d = 1.5, 6.7, 14.2 µm)

Log normal distributions

Case Study: Mineral dust over West Africa in March 2004

Meteosat-8 Image, 2. – 3. März 2004

Prevailing Situation:

- Unusual
- Low temperatures and high wind speeds in the Sahara
- Heavy Precipitation in Libya
- After the mineral dust event ITC was shifted southwards

(Knippertz and Fink, 2006)

Case Study: Mineral dust over West Africa in March 2004

Modis, 04.03.2004, 12 UTC

Interaction of Radiation and Mineral Dust

Shortwave radiation balance

with interaction

without interaction

800

500

300

Emissions

(Pregger et al., IER, Uni Stuttgart)

- Discrimination of point and area sources.
- Temporal resolution 1h, spatial resolution 7km x 7km
- 20 gas phase species (5 inorganic species, 15 VOC's)
- Primary particle emissions as EC and PM (1, 2.5, 10 μm)
- Biogenic emissions calculated online

Trace Gases and Aerosols over Europe

Windvektor 16.08.2005 20 UTC

Anthropogenic Aerosol Radiation Interaction

Simulation period:

16.08.05 - 22.08.05

Simulation domain:

Southwest Germany + adjacent areas

Horizontal Resolution 7km x 7km

Input data:

- Meteorology: GME Reanalysis (DWD)
- Emission data (IER, Stuttgart)
- Land use (JRC-IES,Ispra)

Run A: with aerosol radiation interaction.

Run B: without aerosol radiation interaction

Model domain

Comparison with Measurements (16.08. - 22.08.2005)

Direct Aerosol Effect on Radiation and Temperature (20.08.2005 12 UTC)

Shortwave radiation balance

Parameterization of the Source Function of Pollen Emission

$$\mathbf{F}_{p} = \mathbf{C}_{p} \cdot \frac{\mathbf{q}_{p}}{\mathbf{LAI} \cdot \mathbf{h}} \cdot \mathbf{u}_{*} \cdot \mathbf{K}_{e}$$

- F_p : flux of pollen grains
- c_p: plant specific factor
- q_p: total pollen number of a season per m⁻²
- LAI: leaf area index
- h: canopy height
- u_{*}: friction velocity
- K_e: meteorological correction factor

Helbig et al., 2004

Comparison with Measurements

Summary

LM-ART contains a variety of natural and anthropogenic aerosol particles. This includes an explicit treatment of the soot ageing. The treatment of their impact on the atmospheric radiation allows the quantification of feedback mechanisms.

Ust-radiation-interaction in LM-ART:

Strong influence on radiation balance and consequently on the dynamics

Anthropogenic aerosol-radiation-interaction in LM-ART:

Very low aerosol loads cause changes in shortwave radiation balance at the ground of reasonable sign and order. Surprisingly strong effect on cloud pattern (semi-indirect effect) was found.

Pollen dispersion is also included. This allows an operational pollen forecast with LM-ART in the near future.

COSMO LM – ART (ART=Aerosols and Reactive Trace Gases)

Gas phase chemistry:58 transported variables,Aerosol:77 transported variables

Nesting option is currently realized in collaboration with U. Schättler

Future Developents: Interaction of aerosols and clouds Wet phase chemistry

Aerosols and Climate Processes

Aerosols have an impact on human health,

BUT they have also an impact on climate (and weather).

by:

modifying the atmospheric radiation (direct effect), modifying cloud formation (indirect effect), and mixtures of both.

AND:

They are changing the chemical composition of the atmosphere.

Emissions of Sea Salt Particles

1T

• Mårtensson
$$\frac{dF_0}{d\log D_p} = \Phi \cdot 3.84 \cdot 10^{-6} \cdot U_{10}^{3.41}$$
, $\Phi = \Phi (T_w, D_p)$
• Monahan $\frac{dF_0}{dr_{80}} = 1.373 \ U_{10}^{3.41} \ r_{80}^{-3} \left(1 + 0.057 \ r_{80}^{1.05}\right) \cdot 10^{1.19e^{-B^2}}$
• Smith $\frac{dF_0}{dr_{80}} = \sum_{i=1,2} A_i \exp\left(-f_i \left(\ln \frac{r_{80}}{r_{0i}}\right)^2\right)$, $A_i = A_i (U_{10})$
Lewis and Schwartz [2005]: $r_{RH} = (r_d) \left(\frac{4.0}{3.7}\right) \left(\frac{2.0 - RH}{1 - RH}\right)^{\frac{1}{3}}$

Wind and Number Density

