

ENVIRO-HIRLAM: An online integrated system

Ulrik Smith Korsholm*, Alexander Baklanov, Alexander Mahura, Allan Gross, Jens Havskov Sørensen, Eigil Kaas, Karina Lindberg

Danish Meteorological Institute, Program for Meteorological Model Systems
University of Copenhagen, Niels Bohr Institute

* Contact: e-mail: usn@dmi.dk, phone +45 39157439

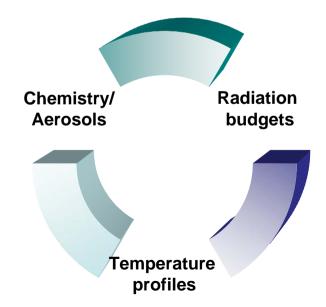
INTRODUCTION - PRE

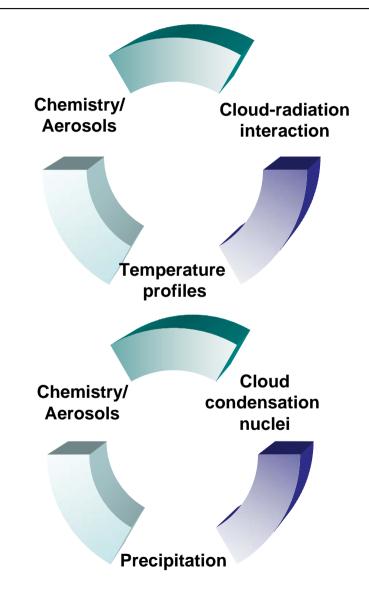
Offline coupled models: DERMA, CAC

Steps towards ENVIRO-HIRLAM:

- Improved representation of pbl. and sl.
- 'Urbanisation' of the NWP model
- Improvement of advection schemes
- Implementation of chemical mechanisms
- Implementation of aerosol dynamics
- Realisation of feedback mechanisms (microphysics)
- Assimilation of monitoring data

INTRODUCTION - MOTIVATION


- Environmental: air pollution forecasts; pollen, ozone
- Short range weather forecasting
- Climate: direct effects, indirect effects, semi-direct effects, large scale dynamical feedbacks



- Photochemistry effect
- Daytime stability effect
- Indirect effect
- Semi-direct effect
- Smudge-pot effect
- Self-feedback effect

INTRODUCTION - DEFINITIONS

off-line models comprise:

Separate CTMs driven by meteorological input data from meteo-preprocessors, measurements or diagnostic models

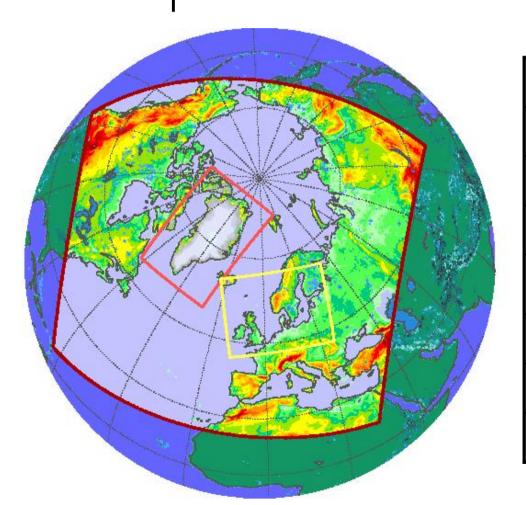
Separate CTMs driven by analysed or forecasted meteo-data from NWP archives or data sets

Separate CTMs reading output files from operational NWP models or specific MetMs with limited temporal resolution (e.g. 1, 3, 6 hours)

on-line models comprise:

On-line access models when meteo-data is available at each time step
On-line integration of a CTM into a MetM; feedbacks are possible: on-line
coupled modeling

OUTLINE AND OBJECTIVE



Objective: To illustrate differences between on-line and off-line coupled models

- 1. Introduction Perspective
- 2. Model description
- 3. Model evaluation
- 4. On-line/Off-line Comparison
- 5. Feedbacks
- 6. Conclusions
- 7. References and acknowledgements

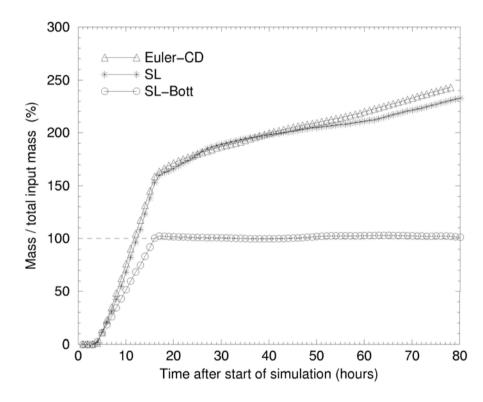
DMI-ENVIRO-HIRLAM - OPERATIONAL

Model identification	T15	S05
grid points (mlon)	610	496
grid points (mlat)	568	372
number of vertical levels	40	40
horizontal resolution (deg)	0.15°	0.05°
time step (dynamics)	360s	120s
time step (physics)	360s	120s
host model	ECMWF	T15

U01: 1.4 km resolution covering part of Denmark

- 3d-var/4d-var upper air data-assimilation
- Surface data assimilation
- Boundary layer height: Ri approach (*Toren and Mahrt, 1986*)
- Vertical diffusion: CBR-scheme (*Cuxart et al., 2000*)
 Coefficient defined by mixing length formulation in Stable/unstable conditions

DMI-ENVIRO-HIRLAM - DYNAMICS

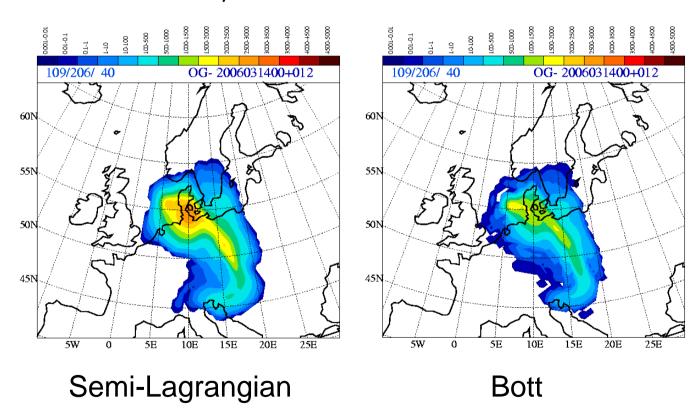

- Bott advection (*Bott, 1989*) + Easter update for tracers (*Easter, 1993*); 4th order polynomials in x and y; 2nd order polynomials in z; uses lower time step than meteorology.
- Semi-Lagrangian for meteorology
 - Risk of mass-wind inconsistency
- Non-staggered finite differences (vertical)
- Hybrid coordinate η:

$$P = A(\eta) + B(\eta)$$
 Psurface

A=0;
$$\sigma$$
 – coordinates

$$B=0$$
; $P-coordinates$

- Arakawa C grid
- Implicit 4th horizontal diffusion


Mass conservation test for ETEX release

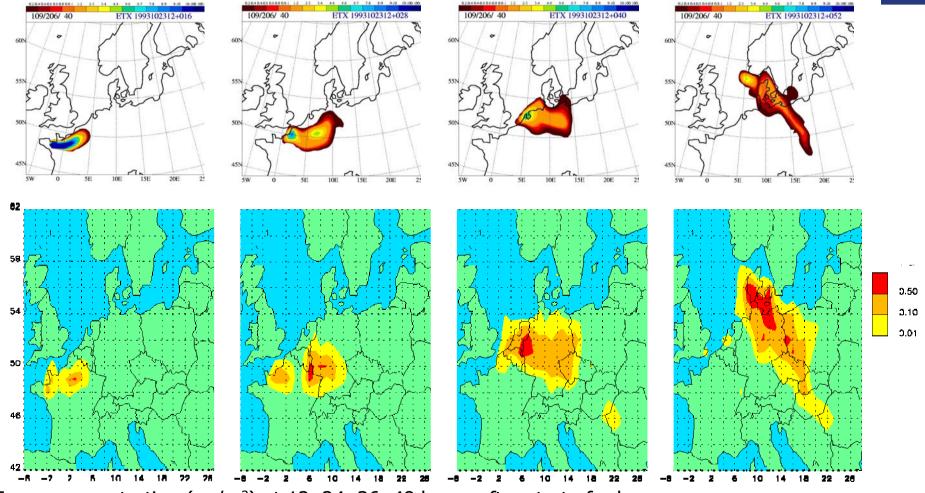
ETEX 1, 48 hours after start of release

DMI-ENVIRO-HIRLAM - DEPOSITION

- Emissions -> Eulerian point sources
- Particle size dependent parameterizations for dry and wet deposition
- Resistance approach for dry deposition (Wesley, 1989; Zanetti, 1990)
- Terminal settling velocity in different regimes:
 - Stokes' law
 - non-stationary turbulence regime
 - correction for small particles
- Dependent on land use classification
- Below-cloud scavenging (washout); precipitation rates (Baklanov & Sørensen, 2001)
- Scavenging by snow (*Maryon et al., 1996*)
- Different scavenging of particles and gases

2.5

DMI-ENVIRO-HIRLAM - NEXT

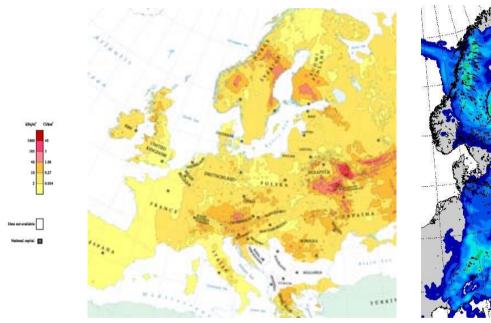


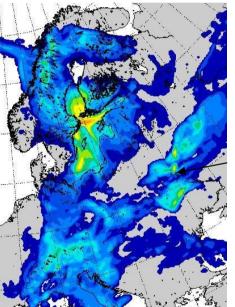
- Rainout into 3D clouds (based on on-line coupling):
 - convective precipitation
 - stratiform precipitation
- Implementation of chemical mechanisms
- Implementation of aerosol dynamics

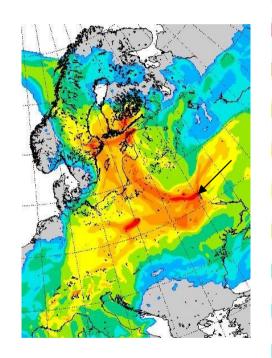
Tracer concentration (ng/m³) at 12, 24, 36, 48 hours after start of release.

Top panel: simulation, bottom panel: measurements.

Station ->	B05	CR03	D05	D44	DK02	DK05	H02	D42	NL01	NL05	PL03
Bias (ngm ⁻³)	0.76	-0.08	0.02	0.45	-0.01	-0.11	-0.02	-0.14	0.48	0.65	-0.06
NMSE	12.9	7.95	2.0	4.54	0.93	4.77	1.05	2.25	4.46	14.8	1.95
Correlation	0.80	0.92	0.29	0.64	0.68	0.08	0.86	0.46	-0.05	0.29	0.43
FMT (%)	12.9	26.1	29.6	32.1	51.4	15.4	49.3	32.7	15.9	19.1	38.4


Averages: bias 0.18 ngm⁻³; correlation 0.49; NMSE 5.25; FMT 29.4% Global: bias 0.39 ngm⁻³; correlation 0.57; NMSE 104.59; FMT 18.4 %




EVALUATION - CHERNOBYL

Chernobyl accident; point source emissions (*Devell et al., 1995, Persson et al., 1986*).

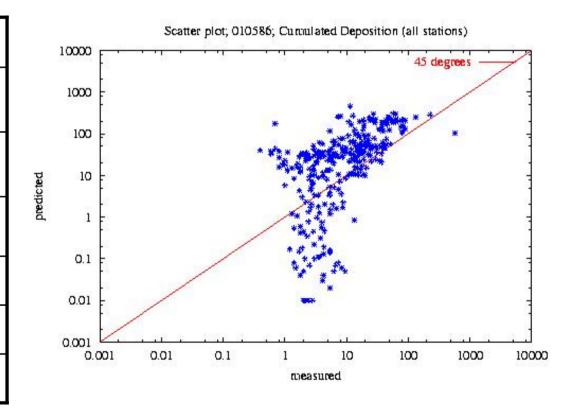
Date: 19860501 18:00 UTC

Left: Cesium deposition measurements (De Cort et al., 1998); Middle: Wet deposition;

Right: Dry deposition. Units: KBq/m²

DMi

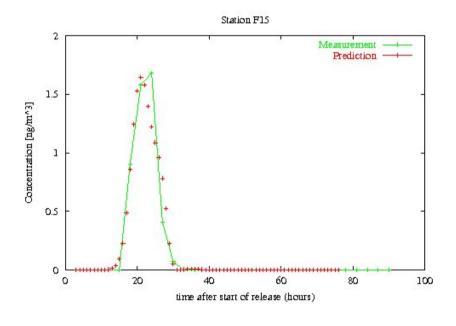
0.3

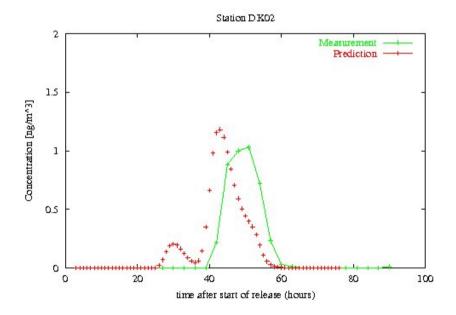

0.01

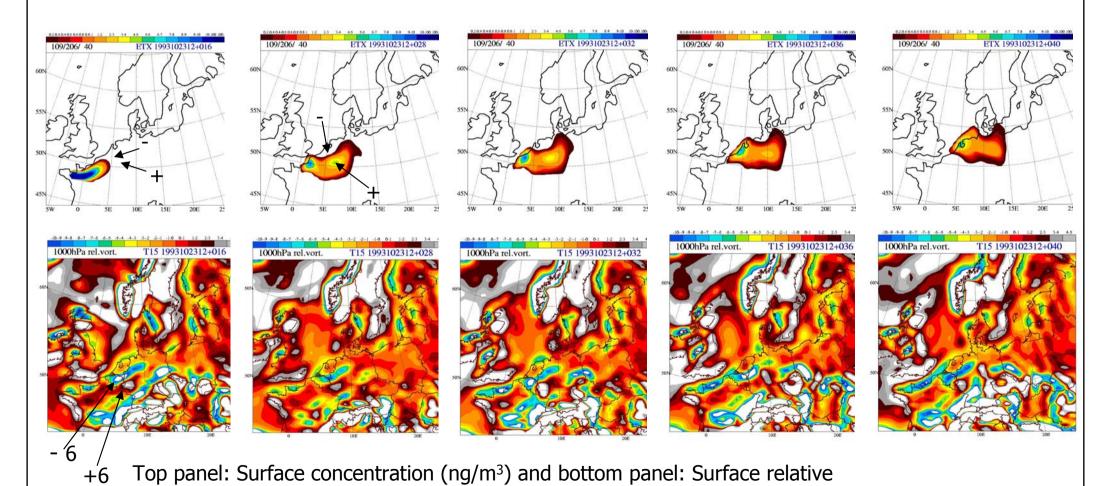
EVALUATION - CHERNOBYL

Global statistical scores		
Observed mean (Bq/m²)	17.97	
Predicted mean (Bq/m²)	56.74	
Correlation	0.59	
Bias (Bq/m²)	38.77	
NMSE	6.34	
FMT (%)	26.29	

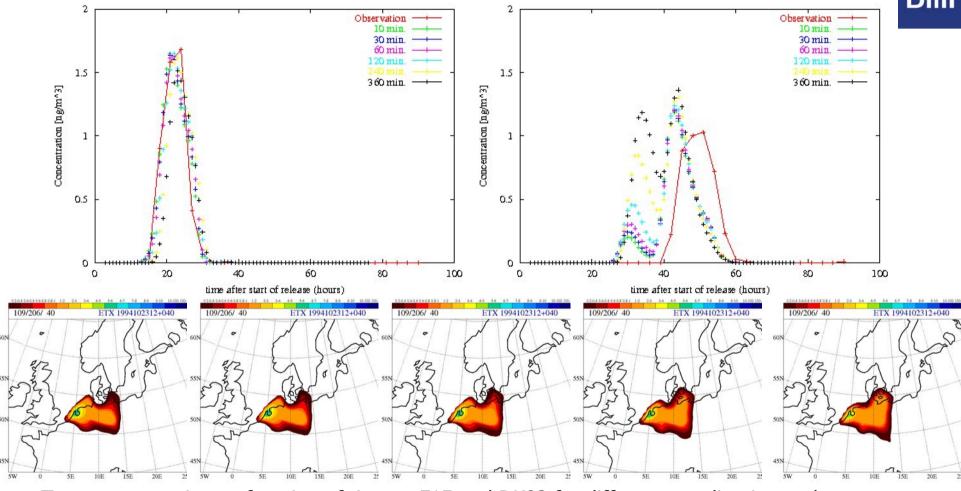
EVALUATION - CONCLUSION




- Transport and dispersion performs satisfactory when compared to ETEX-1
- Dry and wet deposition perform satisfactory when compared to Chernobyl accident data



ON-LINE/OFF-LINE COMPARISON



vorticity (s-1) at 12, 24, 28, 32, 36 hours after start of release.

Top: concentration as function of time at F15 and DK02 for different coupling intervals: 30, 60, 120, 240, 360 minutes. Bottom: concentration after 36 hours with the same coupling intervals

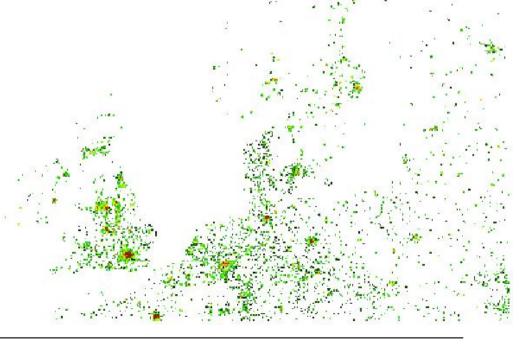
- The coupling interval is important in constraining the evolution of mesoscale disturbances
- If the mesoscale disturbances are not properly resolved, this may lead to errors in tracer distribution

For water clouds:

$$r_{eff}^3 = kr_v^3$$

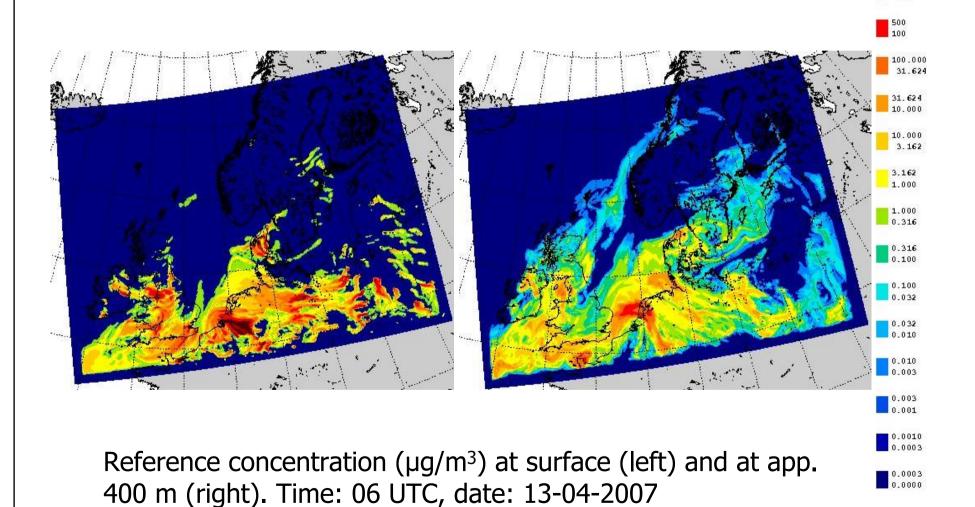
 $r_{eff}^3 = 3L/(4\pi\rho_l kN)$
(*Wyser et al. 1999*)

	k	N [m ⁻³]
Marine	0.81	108
Cont	0.69	4x10 ⁸

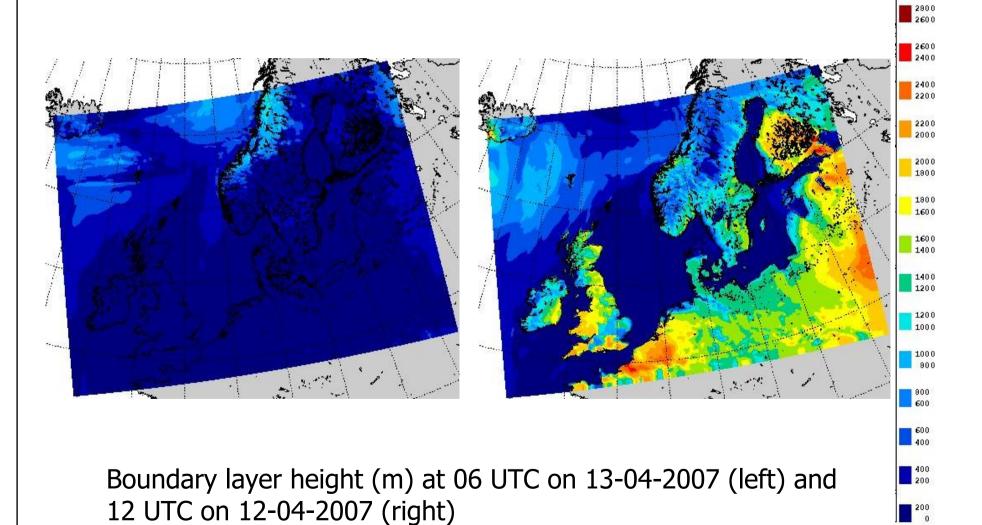

Urban fractions [%; dark green – dark red]

L : Cloud condensate content

N: Number concentration of cloud droplets

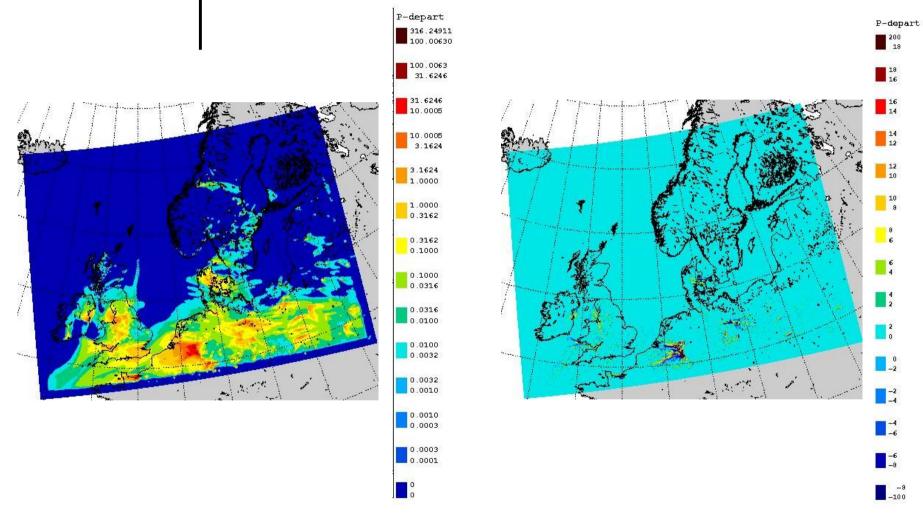

$$\Delta N_{cont} = 10^{8.06} \text{ conc}^{0.48}$$
 $\Delta N_{marine} = 10^{2.24} \text{ conc}^{0.26}$
(Boucher & Lohmann, 1995)

Diameter: 1 µm





unknown 3000 2800



PBLH (m) average from 06 UTC 11-04-2007 to 06 UTC 13-04-2007

Accumulated dry deposition (left) and difference in dry deposition (right) in $\mu g/m^2$ at 06 UTC 13-04-2007. Max difference app. +/- 100 $\mu g/m^2$

FEEDBACKS - CONCLUSION

- Inclusion of the 1st indirect effect gives rise to feedbacks through which boundary layer height is modified
- The change in boundary layer height affects dispersion of pollutants and results in modifications of deposition patterns
- At a given time the increase in boundary layer height may of the same order (100 m) as the effect of urban representations on boundary layer height

FINAL COMMENTS

- Model performs satisfactory against ETEX-1 and Chernobyl accident data
- The coupling interval is important in constraining the evolution of mesoscale disturbances
- Inclusion of the 1st indirect effect may give rise to important feedbacks through which boundary layer height is modified and deposition is changed

Most important steps with respect to HIRLAM development:

- Improved representation of pbl. and sl.
- 'Urbanisation' of the NWP model
- Realisation of feedback mechanisms (microphysics)

The HIRLAM development program at DMI Copenhagen Global Change Initiative (COGCI)

Baklanov A., Sorensen, H., J., 2001, Physics and Chemistry of the Earth, vol. 26, No. 10, 787-799 Bott, A., 1989, Mon. Wea. Rev., 117, 1006-1015

Boucher, O. & Lohmann, U., 1995, Tellus 47, Ser. B, 281-300

Cuxart, J. et al., 2000, Q.J.R. Meteo. Soc., 126, 1-30

De Cort, M., G. Dubois, Sh. D. Fridman, M.G. Germenchuk, Yu. A. Izrael, A. Janssens,

A. R. Jones, G. N. Kelly, E. V. Kvasnikova, I. I. Matveenko, I. M. Nazarov,

Yu. M. Pokumeiko, V. A. Sitak, E. D. Stukin, L. Ya. Tabachny, Yu. S. Tsaturov:

"Atlas of Caesium Deposition on Europe after the Chernobyl Accident", EUR report nr.

16733, Office for Official Publications of the European Communities, Luxembourg, 1998, Plate 1

Easter, C., Mon. Wea. Rev., vol. 121, 297-304

Maryon R., H. et al., 1996, Depart. Of Env., UK, Met. Office. DoE Report # DOE/RAS/96.011

Persson et al., SMHI/RMK report No. 55, 1986

Troen, I., Mahrt, L., 1986, Boundary-Layer Meteorology, 129-148

Wesley, M., L., 1989, Atm. Env., vol. 23, No. 6, 1293-1304

Wyser et al., 1999, Contr. Atmos. Phys., vol. 72, No. 3, 205-218

Zanetti, P., 1990, Air Pollution Modelling – Theories, Computational Methods and Available Software.

Southhampton: Computational Mechanics and New York: Van Nostrand Reinhold

Thank you for your attention

INTRODUCTION - ONLINE/OFFLINE

On-line coupling

- Only one grid; no interpolation in space
- No time interpolation
- Physical parameterizations are the same; no inconsistencies
- Possibility of feedbacks with meteorology
- All 3D meteorological variables are available at the right time (each time step); no restriction in variability of met. fields
- Does not need meteorologicalpre/post-processors

Off-line

- Possibility of independent parameterizations
- Low computational cost if running many experiments with the same meteorological input
- Independence of meteorological model computations