

Off-line model integration:

EU practices, interfaces and possible strategies for harmonisation

Barbara Fay, Deutscher Wetterdienst, Offenbach, Germany Sandro Finardi, ARIANET, Milano, Italy

Copenhagen, 21-23 May 2007 COST728/NetFAM workshop 'Integrated Transport Models' 1

Deutscher Wetterdienst

Outline Part I

- 1. overview: European model systems main systems, applications
- 2. coupling issues input data, downscaling/nesting, modularity
- 3. model harmonisation integrated model systems

COST728 <u>Working Group 2:</u> Integrated systems of MetM and CTM/ADM: strategy, interfaces and module unification

2.1 Coupling of off-line models (Barbara Fay, DWD, Germany)
 D2.1 Overview of existing integrated (off-line and on-line) mesoscale systems.

Copenhagen, 21-23 May 2007

Deutscher Wetterdienst

1. Overview of existing integrated (off-line and on-line) mesoscale systems

• a tentative state-of-the-art inventory on existing methodologies, approaches, models and practice in different countries for building the integrated (off-line and on-line) MetM and CTM mesoscale systems.

•COST728/732 Model Inventory (<u>http://www.mi.uni-hamburg.de/index.php?id=539</u>)

- in Europe + WRF + US EPA + York University, Canada
- sampled from COST728 members through questionnaire
 - \rightarrow as provided, patchy, only active COST countries
- edited, but no rankings, represents knowledge and opinions of individual authors

	Meteorology	Chemistry & transport	Met & chem. & transport	
Mi Cro- Scale COST 732	MITRAS	AERMOD MICTM	AERMOD, AERMOD_UrbanMICTMChensiM-SYSMERCUREMeso-NHMIMORCGVADIS	MetMs and
Meso- Scale	ALADIN, ALADIN/A, ALADIN/PL ARPS	ADMS-UrbanAERMODALADIN-CAMxAURORACALGRIDCAMx	BOLCHEM CALMET/CALPUFF CALMET/CAMx	CTMs from
COST 728	CALGRID, CLM FVM, GEM/LAM GESIMA, GME	CHIMERE, CHIMERE (ARPA) CMAQ, CMAQ(GKSS) EMEP	ENVIRO-HIRLAM GEM/LAM-AQ M-SYS	COST
	GRAMM, Hirlam, HRM COSMO Lokalmodell aLMo, LAMI, LME, LMK COSMO Lokalmodell LME MH	ENVIRO-HIRLAM EPISODE FARM FLEXPART, FLEXPART/A FVM	MC2-AQ COSMO-LM-ART COSMO-LM-MUSCAT MCCM	728 model
	LAPS, MC2 MEMO (UoA-GR), (UoA-PT) MERCURE, MESO_NH	GEM/LAM-AQ GEOS-CHEM GRAMM HYSPLIT LOTOS-EUROS LPDM	MEMO (UoT-GR) MERCURE Meso-NH	inven-
	METRAS MINERVE MM5 (UoA-GR) MM5 (UoA-PT), (UoH- UK),(GKSS)	MARS (UoT-GR), (UoA-PT) MATCH MECTM MOCAGE MUSE NAME III OFIS	RCG TAPM	(WG4)
	NHHIRLAM, RAMS SAIMM, TAMOS TRAMPER, UM WRF_ARW	NAME IIIOFISRCGSILAMSPRAY 3TAMOSTCAMTREXUAM-V		
Macro- scale	GEM GMElam HIRLAM TAMOS	CAM-CHEM CHIMERE, CHIMERE (ARPA-IT) EMEP FLEXPART, FLEXPART/A GEOS-Chem IMPACT LPDM MATCH	ENVIRO-HIRLAM GEM_AQ	
		MOCAGE NAME III SILAM STOCHEM TAMOS TCAM		5

Model systems covered in - 16 countries / 38 institutions / > 25 systems

Main model systems

MM5 COSMO HIR-ECM GME UM RAMS CAL-ECHAM NCEP WRF ALA LAM WF -DIN MET DWD LM 3 2 3 3 3 2 11 9 3 6 6

CTMs:	CAMx	Chimere	CAL- GRID	CMAQ	Match	MEMO
	5	4	3	3	2	2

MetMs:

Copenhagen, 21-23 May 2007

COSE

Model applications

- Diagnostic / climatologic

Transport, AQ assessment + impact scenarios, episodes, source apportionment

- Forecasting: transport + chemistry, AQ (UAQ, coastal and industrial AQ), management: gases incl. ozone, PM, pollen grains
- radioactivity (and environment) emergency forecasting

On-line coupled MetM - CTMs

BOLCHEM (CNR/ISAC, Bologna) **ENVIRO-HIRLAM (DMI)** COSMO LM_ART (FZ Karlsruhe) COSMO LM-MUSCAT (IfT Leipzig) MCCM (Inst.Environm. Atmos.Research FZ Karlsruhe, Garmisch-Partenkirchen, Germany) MESSy: ECHAM5(and planned: LM) (MPI-C Mainz, Uni Bonn) MC2-AQ (York Univ, Toronto, Warsaw Univ.) GEM/LAM-AQ (York Univ, Toronto, Warsaw Univ.) OPANA = MEMO + CBM IV + SMVGear (Univ. Madrid) ECMWF (passive prognostic stratos. ozone tracer, GEMS chenistry) GME (DWD, passive prognostic stratos. ozone tracer)

Copenhagen, 21-23 May 2007

On-line coupled models

Model name	On-line coupled chemistry	Time step for coupling	Feedback
BOLCHEM	Ozone as prognostic chemically active tracer		None
ENVIRO-HIRLAM	Gas phase, aerosol and heterogeneous chemistry	Each HIRLAM time step	Yes
WRF	RADM+Carbon Bond, Madronich+Fast-J photolysis, modal+sectional aerosol	Each model time step	Yes
COSMO LM-ART	Gas phase chem (58 variables), aerosol physics (102 variables), pollen grains	each LM time step	Yes
COSMO LM-MUSCAT	Several gas phase mechanisms, aerosol physics	Each time step or time step multiple	Yes
MCCM	RADM and RACM,photolysis (Madronich), modal aerosol	Each model time step	(Yes)
MESSy: ECHAM5	Gases and aerosols		Yes
MESSy: ECHAM5-COSMO LM (planned)	Gases and aerosols		Yes
MC2-AQ	Gas phase: 47 species, 98 chemical reactions and 16 photolysis reactions	each model time step	None
GEM/LAM-AQ	Gas phase, aerosol and heterogeneous chemistry	Set up by user – in most cases every time step	None
GME ECMWF model (IFS) OPANA=MEMO+CBMIV	Progn. stratos ozone passive tracer Prog. stratos O3, GEMS chemistry	Each model time step	Yes

2. Coupling issues and problems

2.1 Input data

 measurements -> pre-processors: point measurements to 3D Only diagnostic,possible advantage: no divergence from obs
 models

```
input format
GRIB (majority?)
netCDF
coupling time step
15 min: COSMO LMK 2.8km, UM (4km)
1 h (majority)
3h (6h)
```

Copenhagen, 21-23 May 2007

Deutscher Wetterdienst

2.2 Downscaling / nesting

- requirements: higher resolution
 - improved vertical turbulence
 - suitable heterogeneous surface characteristics, fluxes
 - subgrid-scale orography,
 - urban structures,
 - local emission sources + transformations
 - local circulations (sea breeze, mountain-valley winds)
 - improved chemical boundary conditions

• achieved through (self-) nesting of MetMs and CTMs 2-way interactive nesting for *MetMs* MM5, RAMS, (COSMO-LM)

Copenhagen, 21-23 May 2007

Cost

2.3 Modularity

Requirements:

- high modularity
- high compatibility, e.g. no COMMON blocks but direct parameter passing
- flexible IO strategies

2.4 Interfaces -> part II, Sandro

3. Model harmonisation - integrated model systems

- COST710 (1994-1998): Harmonisation in the pre-processing of met data for dispersion modelling
 - including harmonisation questionnaire
- COST715 (1998-2004): Met applied to urban air pollution problems
- regular conferences on Harmonisation for regulatory modelling
 - harmonised local-scale model evaluation:
 - Model Evaluation Kit
 - American Standard Evaluation Tool COST728, WG4: harmonised evaluation

Copenhagen, 21-23 May 2007

Cost

Deutscher Wetterdienst

- PRISM (FP5): Earth system modelling, software infrastructure
- PRISM support: COSMOS, OASIS coupler
- ENSEMBLES (FP6): climate change ensemble prediction system for Earth system models
- ENES European system for Earth system modelling including PRISM, ENSEMBLES ...
- ESMF Earth system modeling framework (US)
- FLUME flexible Unified Model Eenvironment (UK MetOffice)
- CURATOR info on earth system/climate models, intercomparison projects and IPCC assessments (US)
- GEMS global+reginal Earth system monitoring using satellites and in-situ data, ECMWF, data assimil. and forecasting
- GENIE Grid ENabled integrated Earth system model (UK)
- GO-ESSP global orga of Earth system science portal (UK,NOAA,NASA...):access to obs and simulated data

Off-line model integration: EU practices, interfaces and possible strategies for harmonisation

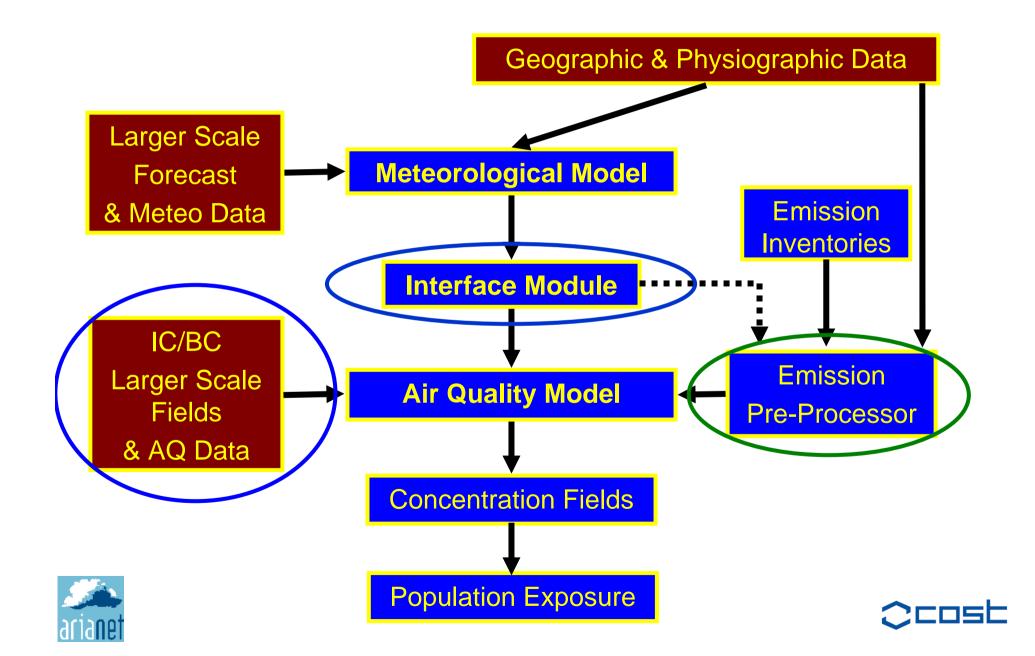
Part II

Interfaces between meteorological and air quality models

Sandro Finardi

Copenhagen, 21-23 May 2007

Why should we care about interfaces ?


In principle, interfaces should be simple pieces of software connecting Met. Models outputs and AQ Models inputs with minimum influence on results, but:

- Often MetM and AQM have been built separately and are applied on different grids at different space scales
- Often MetM cannot provide all the variables required by AQM or some fields can be estimated by parameterisations and algorithms not compatible with modelling methods implemented in AQM
- Some AQ models need to rely on "standard" meteorological products, e.g. average met. variables while turbulence, atmospheric stability, mixing height, and dispersion coefficients are diagnostically estimated.
- Sometimes re-computation or "filtering" of dispersion parameters can guarantee AQ modelling robustness for practical applications.
- The communication between off-line coupled meteorological and AQ models is a problem of often underestimated importance:
- Interfaces can limit the possibility of AQ models to access and exploit all the information provided by new generation mesoscale meteorological models, and can make difficult model intercomparison,
- Interfaces can be used to improve boundary layer low description

AQ Modelling System Conceptual Scheme

Common interface tasks :

- Interpolation of Met. data to match grid differences (geographic projections, vertical grid system, resolution)
- downscaling of meteorological data
- Estimation of boundary layer scaling parameters, mixing height and eddy diffusivities (or σ_i and T_L for Lagrangian models)
- Emissions related computations (e.g. biogenic VOC emission, wind blown dust).
- Enhancement of physiographic data and parameterisations (e.g. urbanisation)
- Air quality fields and data treatment for AQ models IC/BC

COST728/732 Inventory - Coupled Models involved:

MetMs:

EU Met. Services: LM, ALADIN, HIRLAM, UM

Other EU: METRAS, MEMO

US Community: MM5, RAMS, ARPS, WRF

CTM/AQMs:

EU Met. Services: LPDM, TRAJEK, NAME III, MATCH, SILAM, DERMA, ARGOS

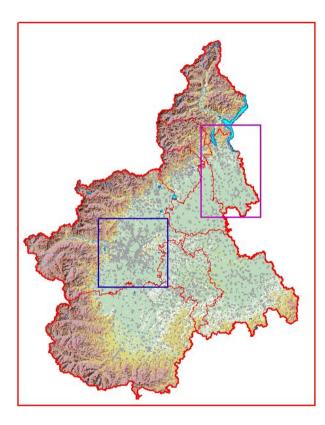
Other EU: TCAM, FARM, SPRAY3, CHIMERE, AirQUIS, FLEXPART, AURORA, EURAD, MECTM, MARS, MATCH, AUSTAL, MISKAM, HYSPLIT, SCIPUFF

US Community: CAMx, UAM-V, CMAQ, REM-CALGRID, CALPUFF

Three main practises :

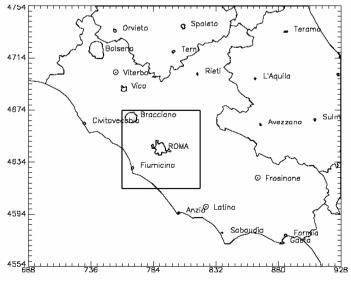
- Development of integrated systems (mainly Met services)
 - Interfaces built on specific model features and needs
- Use/Customisation of US Community modelling systems
 - MM5+CAMx, MM5+UAM-V, MM5/WRF+CMAQ
 - Customisation of available interfaces (e.g. MCIP)
- Interfacing of self developed AQ models with EU Met Services and US Community Met. Models
 - Development of model specific or general purpose interfaces

Different choices possible effects :


Some interface choices can have relevant effects on the AQ simulation results and mask actual meteorological and air quality model results, examples:

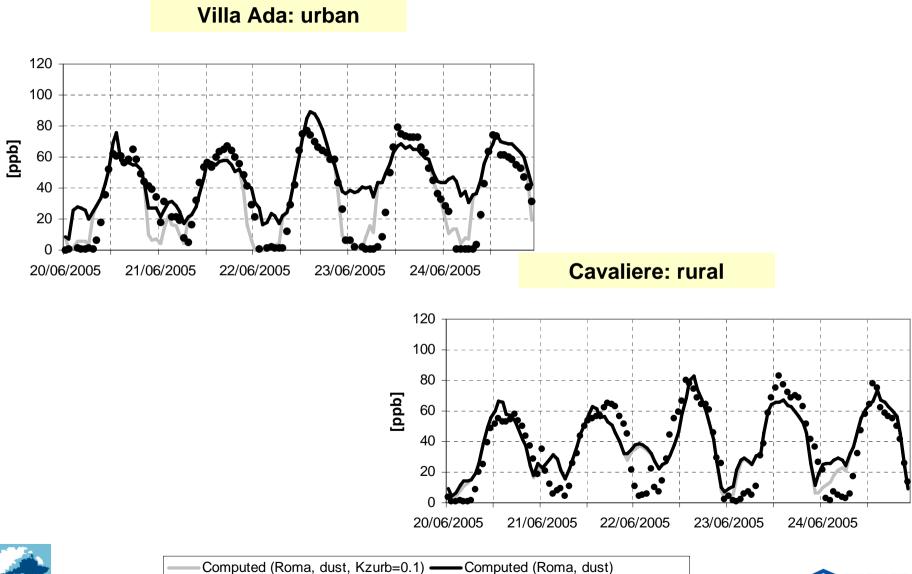
- Minimum K_z value effect
- Reconstruction or direct use of modelled surface fluxes
- Air quality initial conditions effects

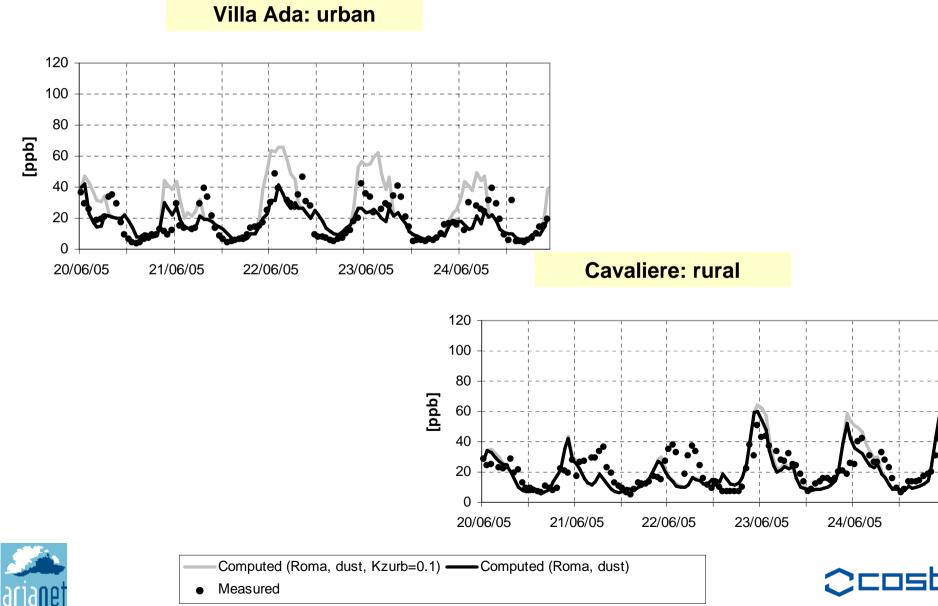

Examples from AQ simulations in Torino and Roma

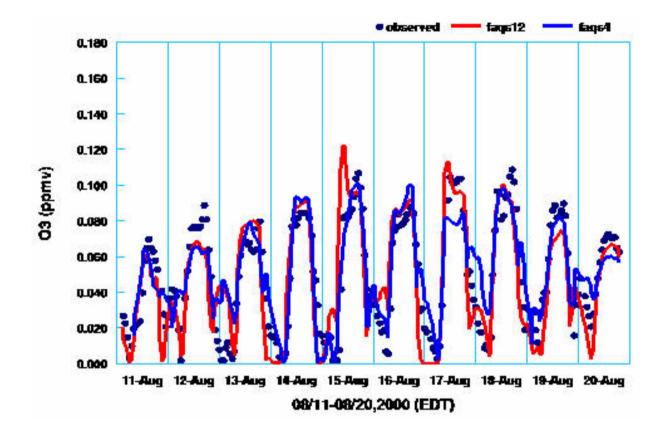


Finardi et al., 2007, Env. Mod. and Sof.

Gariazzo et al., 2007, Atm. Env.1h




Minimum K_z effect: O₃


Minimum K_z effect: NO₂

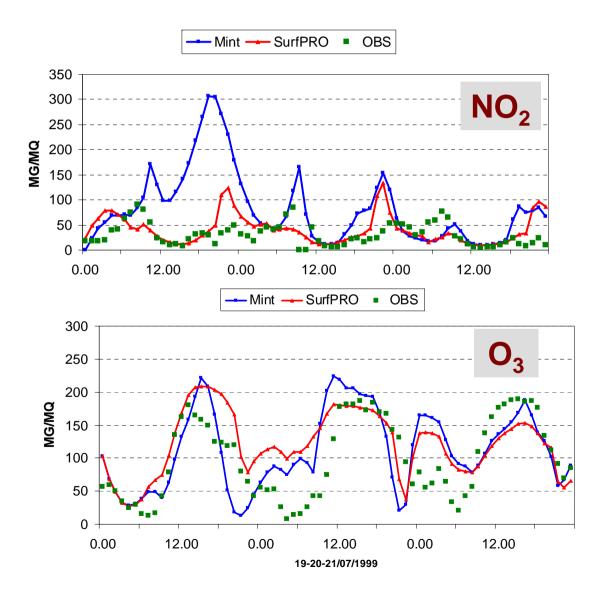
Measured

COSE

Minimum K_z effect: other experiences

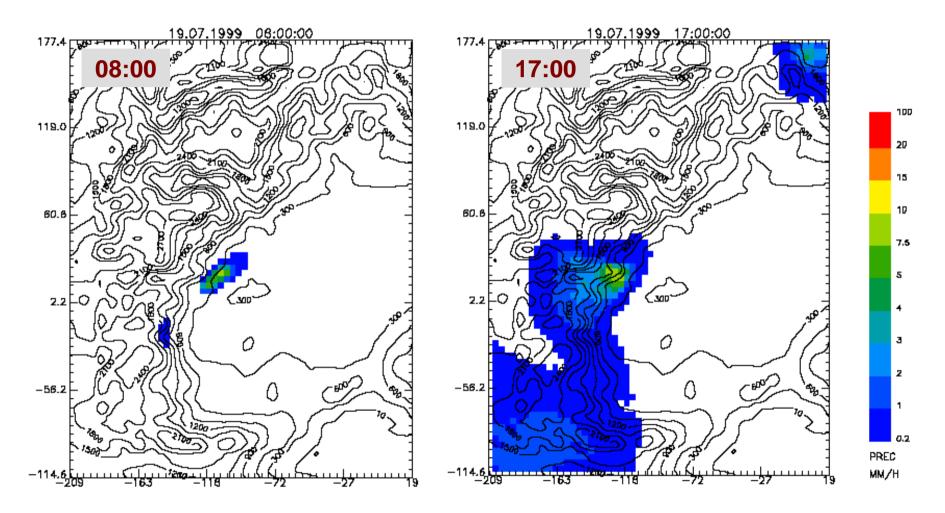
Time Series Plot of Simulated and Observed Surface Ozone Concentrations in Columbus, GA, the Minimum Vertical Eddy Difusivity of 10⁻⁴m²/s was used in CMAQ.

Ted Russell, 2003, "Air Pollutant Transport, Control and Modeling Issues in the Eastern United States", Georgia Inst. of Technology

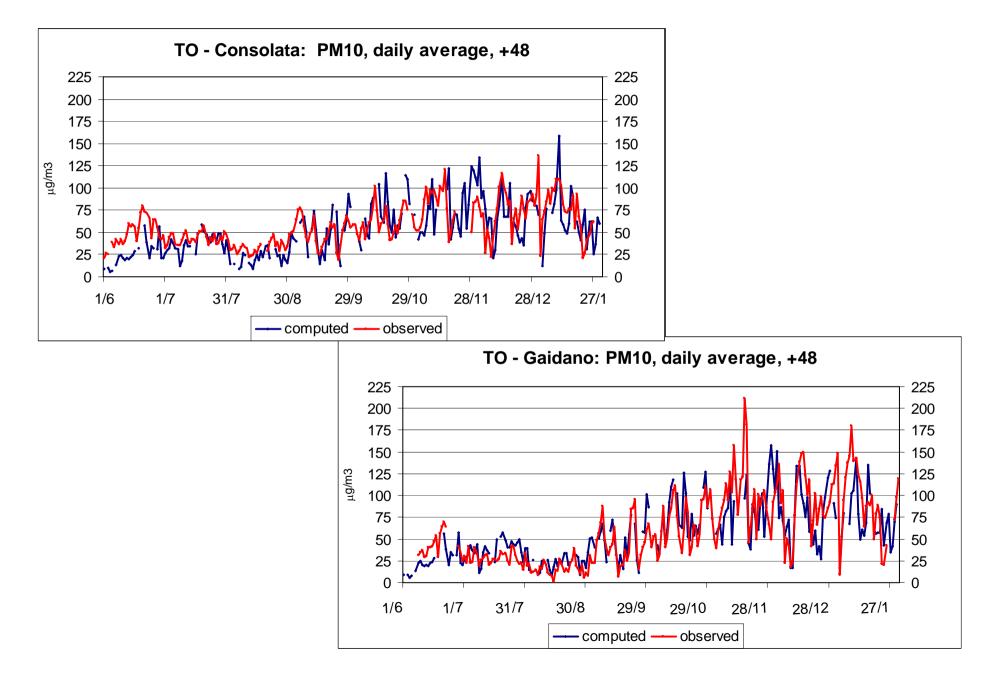

Direct use or reconstruction of surface fluxes

Direct use or reconstruction of surface fluxes

Torino – Lingotto: effects on concentrations



Direct use or reconstruction of surface fluxes


Cause: mountain foot thunderstorms



Nesting effects through IC/BC:

Nesting effects through IC/BC:

Torino is out of the Po valley for CHIMERE topography, causing initial concentration underestimation

Discussion and Conclusions (1)

- A large variety of air quality modelling systems are developed and applied for research, operational forecast and air quality assessment over Europe.
- The use of different meteorological drivers, air quality models and interface modules can be considered a scientific richness but creates problems of model result inter-comparison and make difficult stakeholders choices for practical applications.
- Difficulties in model development collaboration in Europe are evident and can limit an effective exploitation of scientific advance.
- Model harmonisation remains an important issue despite earlier efforts, e.g. COST710 (1994-1998) which are continued in the regular Harmonisation conferences and recent COST Actions (728, ES0602).
- Development of community models can foster scientific cooperation, state-of-the-art knowledge dissemination and tools harmonisation (US experience), but it seems still hardly feasible in Europe.

Discussion and Conclusions (2)

Some basic steps to help harmonisation are desirable and feasible:

- Definition of agreed guidelines for off-line and on-line integrated modelling
- Modular modelling, flexible IO strategies to permit different model use and testing
- Definition of standards for the distribution of meteorological fields for air quality applications (weather forecast standards are not suitable)
- Continental scale air quality fields distribution harmonisation
- Definition of guidelines for interfaces development and application.
- Volunteer sharing of software implementing parameterisations for interfaces ?