Chemistry in Enviro-HIRLAM

Chemistry in Enviro-HIRLAM

Emission pre-processing

GEMS-TNO emission inventory; 0.125 x 0.0625 (*Visschediijk, et al., 2007*)

Dmi

NO_x emissions; ship tracks not included here

Emission pre-processing

GEMS-TNO species: SO₂, NO_x, NH₃, CO, NMVOC's, CH₄, PM_{2.5}, PM₁₀

10 SNAP codes:

- Energy transformations
- Small combustion plants
- Industrial conbustion
- Industrial processes
- Fossil fuel production
- Solvent and product use
- Road transport
- Non-road transport and mobile machinery
- Waste disposal
- Agriculture

Emission processing

- Eulerian point sources (and areal sources)
- Well mixed grid cells
- Location of emission point, volume
- $\psi_i^{t+1} = \psi_i^{t-1} + 2 \Delta t Q_i$
- Dependence on resolution

Emission processing

Pre-processing of inventory:

- Read inventory
- Unpack temporal variations
- VOC splitting (Theloke and Friedrich (2007))
- Lumping follows the chemistry scheme chosen (NWP-Chem)
- Unit conversions
- Mass conservative interpolation to model grid
- Handles SNAP codes

Currently, output read from external file during initilization

The NWP-Chem mechanism: Lumped tropospheric mechanism based on newest chemical knowledge

Developed for online coupled models cpu-time economical low memory requirements

Covers most important chemical processes responsible for air pollution and aerosol formation in meso-scale models

Advectied species: no, no2, so2, co, hc, hcho, o3, ho2,

hno3, h2o2, h2, h2so4, op, ho, od, ro2, rooh

Rates and coefficients in NWP-Chem-gas is estimate based on lumping and optimization procedures.

Chemical reactions \rightarrow QSSA.

NWP-Chem is tested against the RACM+ELCID mch. at different standard marine, rural and plume scenarios.

The Quasi Steady State Approximation (*Hesstvedt, et al., 1978*)

```
d\psi_i/dt = P_i - L_i \psi_i
```

Each equation assumed independent

For $L_i \Delta t > 10$ specie lifetime shorter than time step -> Steady state solution: $\psi_i(t + \Delta t) = P_i(t)/L_i(t)$

For $L_i \Delta t < 0.01$ the Euler forward algorithm is stable -> $\psi_i(t + \Delta t) = \psi_i(t) + \Delta t (P_i - L_i \psi_i(t))$

For $0.01 < L_i \Delta t < 10 P_i$ and L_i are assumed constant over a time step -> first order equation, constant coefficients ->

$$\psi_i(t + \Delta t) = P_i/L_i + (\psi_i(t) - L_i/P_i)exp(-L_i\Delta t)$$

Lumping follows Gross et al., 2005

E.g. $[NO_x] = [NO] + [NO_2]; [O_3NO] = [O_3] - [NO]$

Photolysis reactions:

$$NO_2 + hv \rightarrow O(^{3}P) + NO$$

 $O_3 + hv \rightarrow O(^{2}D) + O_2$
 $HCHO + hv \rightarrow 2 HO_2 + CO$
 $HCHO + hv \rightarrow H_2 + CO$

Reaction rates are prescribed and follows Poppe et al., 1996

 Testing of NWP-Chem:

OD comparison to other schemes

3D testing: full chemistry, aerosol dynamics and equilibration

Compare NO2 to AIRBASE measurements near Paris

Model area (geopotential height (meters)) along with measurement stations

3D testing

Simulation specifics

- Initialized 00 UTC 29 June 2005 + 48 h
- 24 hour spin-up
- Meteorological boundaries from DMI-HIRLAM-S05
- Inflow neglected
- 248 meas. Stations were available
- Urban stations disregarded;
- Recast to 50 x 50 km grid; 3 stations per grid cell
- Some stations had missing values
- 27 evenly spaced stations remained

Conclusions

NWP-Chem is the default scheme in Enviro-HIRLAM

It is cpu-time and memory economical

NWP-Chem performs well compared to more elaborate schemes in 0D simulations covering free tropospheric, tropos. background and plume scenarios.

The 3D vew rsion performs satisfactory w.r.t NO_{2} in the case Considered

However, the full 3D version has only been tested in a single case

