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As long as convection is not completely resolved by the model grid, a subgrid deep convection
scheme has to provide its contribution to the clouds and precipitation. How to combine this with the
contribution from resolved condensation, in a way to get results independent of numerical issues, is
a tough problem.

From the Clausius-Clapeyron and the energy equations, it can be shown that the saturation moisture
decreases when the vertical velocity increases. This is also true at the scale of the grid box averages.
In presence of convective updraughts on a fraction of the grid box o, <« 1, the resolved vertical
velocity @ results from averaging large updraught velocities w, with a near zero upwards velocity w,
in the updraughts environment. Considering a single equivalent updraught (mass flux scheme):

W= oywy + (1 — 0y)we = oywy

In this case, the reduction of the grid box area induces a proportional increase of the updraught area
and of the resolved upwards velocity. The saturation moisture is then lower. Also in weak convective
situations, the vertical velocity is likely to take higher extreme values when reducing the grid box
width.

But the lowering of the saturation moisture will imply more condensation only where the local
moisture is correlated with the upwards motion. Therefore it is difficult to foresee the trend of the
resolved precipitation when varying the mesh size.

The model normally forecasts mean grid box values, which correspond to the maximum precipita-
tion only for stratiform rain bands which are wider than the individual grid boxes. For convective
precipitation covering only a fraction of the grid box, the presented mean values are lower than the
peak precipitation.

So even in a perfect model, the precipitation amounts do not have to be conserved when varying the
mesh size; but this does not free us from the need to be coherent in the water budgets. In the case of
a closure of the convective scheme by moisture convergence, the double counting may be avoided by
considering that the total moisture convergence towards the grid box is parted between the detrain-
ment of moisture by the updraught and the total condensation, i.e. convective and resolved. This
was applied for a while with some success in the Aladin model. But it did not solve everything: we
are still attempting to superimpose two separate non linear schemes.

The quasi-equilibrium (QE) hypothesis has been widely used in the convection parametrization. It
assumes that the adjustment time of the convection (7p ~ 103 — 10*s) is much smaller than the
so-called ‘large scale’ forcing (10%s). But the actual processes affecting the forcing of the convective
scheme may include anvil clouds, or local turbulent processes, which have much shorter characteris-
tic times, at least comparable to 7p. The QE hypothesis is then no longer bearable and it becomes
necessary to include some memory of the convective activity from one time step to the next. Repre-
senting the updraught mass flux as the product of a mesh fraction o, by an updraught velocity wy,
allows to use a vertical motion equation for the latter. Using w* = w, — w, the relative updraught
velocity, it takes the form

Oowy, w2 1 0w;?
= —F —(1+K e

where the RHS is composed of a buoyancy term, a dissipation term and a vertical advection term.
This equation is actually valid for a single bubble or plume. In a mass flux scheme, we represent
the grid box variability composed of various updraughts of different lifetimes, by a single equivalent
updraught. Applying the same prognostic equation to this mean updraught may be questionable.

Using a closure by moisture convergence, a prognostic equation for the mesh fraction o,, may be
derived, expressing that the latent heat brought by the mositure convergence is either absorbed in
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Figure 1: Left: temperature (red), cloud ice (yellow) and liquid (blue), cloud fraction (green) at
model level 18 (around 575 hPa). Right: vertical cross section along a cloudy area (Y axis: model
levels).

the updraught activity or stored in an increase of o,:
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The profile of the updraught properties (temperature, moisture contents of the different phases,
horizontal momentum) should normally also be memorized from one time step to the next, unless
we keep considering it as a sequence of quasi-equilibria. The question is wether the time needed by a
parcel to raise along the whole profile may be considered smaller than the characteristic time of the
external forcing. In our current scheme we make this hypothesis.

The prognostic variables o, w, are advected by the mean wind, and a geographical separation of
the trigger and effect is possible, as well as a time separation. In this context, we can separate the
downdraught from the updraught, allowing the former to survive the latter.

Using an explicit evaluation of the mesh fraction o, allows to take into account the updraught
properties over it in the grid box averaging, which is important when the grid dimensions are no
longer much wider than the scale of the convective events.

The integrated scheme we propose uses a microphysical package (derived from Lopez, 2002) with
two cloud water variables (ice and liquid). The updraught is called first and outputs, beside the
convective fluxes, detrained cloud water contents on a detrainment area. The resolved condensation
is estimated outside the updraught and its detrainment area, and both are combined to enter the
rest of the microphysics (auto-conversion to precipitation, Bergeron effect, collection and evaporation
of precipitation). The grid box is parted geometrically between the updraught and its detrainment
area, the stratiform cloud outside it, the total cloudy area, the precipitatig area, the downdraught.
There is also a mass flux scheme for a moist downdraught, based on the total precipitation evapora-
tion.

o4



The general structure of our deep convection scheme is still based on Bougeult (1985)’s approach,
and this induces some weaknesses which are difficult to overcome. The triggering of the convection
is not well modelized. The use of prescribed entrainment profiles makes it impossible to write a local
mass budget from which we could either compute the mesh fractions or the detrainment. So, we
merely consider (like many schemes) a constant updraught mesh fraction along the vertical, which
implies a bad mass flux representation.

An example of model fields is shown in Figure 1. At the present stage, the structure of the forecasted
fields appears correct in the 3D cases we tried, but the amounts of precipitation are too low. This
seems to be associated to a lack of realism of the detrainment profile of the updraught, and its
link to the updraught mass flux. The problem is directly related to the a priori imposition of the
entrainment profile mentioned above. New tracks are now investigated, to get out of this trap.

References

[BOUGEAULT(1985)] Ph. BOUGEAULT. A simple parameterization of the large-scale effects of cumulus
convect ion. Mon. Wea.Rev, 113:2108-2121, 1985.

[GERARD and GELEYN(2005)] L. GERARD and J.-F. GELEYN. Evolution of a subgrid deep convec-
tion parametrization in a limited area model with increasing resolution. submitted to Q.J.R.
Meteorol. Society, 2005.

[LoPEZ(2002)] Ph. LoPEz. Implementation and validation of a new prognostic large-scale cloud and
precipitation scheme for climate and data assimilation purposes. @. J. R. Meteorol. Soc., 128
(579):229-258, 2002.

95



