Intercomparison of numerical models for the prediction of fog

Enric Terradellas (INM) and Thierry Bergot (Météo-France)

NetFAM/COST722 Workshop on cloudy boundary-layer, Toulouse, France

# ✓ PHASE I: selected cases ✓ PHASE II: seasonal comparison



COST ACTION 722: SHORT-RANGE FORECASTING METHODS OF FOG VISIBILITY AND LOW CLOUDS

# Background ✓ Shortcomings of op. NWP models

# ✓ 1D models: An alternative

# Shortcomings of operational NWP models in predicting fog

✓ Horizontal and vertical resolutions are too coarse ✓ Surface and boundary layer processes are not accurately enough parameterised, especially under stable conditions ✓ Initialisation of surface and boundary layer is not good enough.



Photo: Ted Eckmann, UCSB Geography Department

# 1D (single column) models: an alternative

✓ May improve vertical resolution ✓ May use more expensive parameterisations ✓ May assess new schemes of physical processes ✓ May modify the initialisation, using or discarding specific data or introducing data from dedicated observational systems. ✓ May introduce climatological knowledge



# Main goals of the experiment

✓ Identify capabilities and limitations of SCM in fog forecast ✓ Find out reasons behind different evolutions ✓ Assess the importance of vertical resolution

Phase I: Intercomparison of six different singlecolumn models for two selected cases

# ✓ Case 1: Fog✓ Case 2: Near-Fog

References: ✓ Bergot et al. (2007), J. Appl. Met. and Clim. (in press) ✓ Bergot et al. (2007), COST 722 Final Report (in press)

# The models

| participant                | model            | Levels | Levels  |
|----------------------------|------------------|--------|---------|
|                            |                  | < 50 m | < 200 m |
| Enric<br>Terradellas       | HIRLAM-<br>ISBA  | 1      | 3       |
| Olivier<br>Liechti         | TBM              | 2      | 7       |
| Niels W.<br>Nielsen        | DMI/<br>HIRLAM   | 13     | 20      |
| Thierry<br>Bergot          | COBEL-<br>ISBA   | 13     | 20      |
| Mathias<br>Mueller         | COBEL-<br>NOAH   | 18     | 30      |
| Joan Cuxart &<br>Toni Mira | MESO NH-<br>ISBA | 50     | 89      |

Case 1: fog 1-2 Oct 2003 Classical radiation fog between 20:30 and 06:00. Its depth progressively grows





#### Visibility



# **Case 1: fog. Init.: 18 UTC** All models predict fog, but at different times and with very different depths and liquid water contents



# Case 1: fog. Init.: 18 UTC

Average evolutions of T and q are quite correct, but individual lowlevel evolutions considerably diverge, partly because of the data assimilation.



# Case 1: fog. Init.: 21 UTC

## All models predict a late dissipation

| MESO   | NH      |                     |    | (b) |
|--------|---------|---------------------|----|-----|
| COBE   | L-NOAH  |                     |    | -   |
| COBE   | I -ISBA |                     |    |     |
| HIRLA  | M-DMI   |                     |    |     |
| tBM    |         | _                   |    |     |
| HIRLA  | M-INM   |                     |    | -   |
| <br>21 | 00      | 03<br>Forecast time | 06 | 09  |



#### **Different fog layers**

# Case 1: fog. Init.: 00 UTC



With a thick fog layer, the evolution is not so fast and the simulations tend to converge.

The resolution of HIRLAM/INM is too coarse. MESO-NH has been run without gravitational settling.

### Case 1: fog. Initialisation: 03 UTC

| MESONH-RR                 | (d) |
|---------------------------|-----|
| MESONH                    |     |
| COBEL-NOAH                |     |
| COBEL-ISBA                |     |
| HIRLAM-DMI                |     |
| tBM                       |     |
| HIRLAM-INM                | _   |
| 03 06 09<br>Forecast time |     |

The dispersion in the burn-off time forecast is similar to that in the onset time.

### Case 2: near-fog 11-12 Oct. 2003









Weak stability (moderate wind speed and weak inversion) Strong cooling High dew deposition

#### Case 2: near-fog



All models, except HIRLAM/INM predict fog.

HIRLAM/INM underestimates the cooling rate.

#### Case 2: near-fog



The evolution of the screen T and q is correctly simulated by all models.

# **Conclusions of phase I**

- ✓ Under conditions of strong stability, the models present very different behaviour.
- ✓ The simulation of fog needs models with a high vertical resolution.
- ✓ Hi-res. does not release the models from the need of accurate parameterisations.
- ✓ The adaptation of parameterisations to the resolution is crucial
- ✓ The role of the gravitational settling and the dew deposition rate has to be highlighted

Phase II: Comparison of H1D (INM) and COBEL-ISBA (Météo-France) during a whole winter season

Reference: ✓ Terradellas and Bergot (2007), COST 722 Final Report (in press)

# **Paris-ChdG airport** Paris-Charles de Gaulle airport is located over relatively flat terrain.





# Test period: 16 Jan.-14 Feb. 2005



H1D runs: 0000, 0600, 1200, 1800. Runs start 3h30m after nominal runtime. 24h fcst



COBEL-ISBA runs: 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100. 12h fcst

# Full season comparison: 1 Oct. 2005 – 28 Feb. 2006



H1D runs: 0000, 0600, 1200, 1800. Runs start 3h30m after nominal runtime. 24h fcst.



COBEL-ISBA runs: 0000, 0300, 0600, 0900, 1200, 1500, 1800, 2100. 6/8h fcst.

### Initialisation



# Dedicated obs. system:

- **30-m tower: T, RH**
- Soil T and humidity
- SW and LW radiation







#### Initialisation



### HH HH+03 24-H FORECAST SYNOP OBS.

# The problem of fog forecasting









#### H1D/COBEL. Night BL temperature



Systematic difference in the cooling rate: nocturnal cooling is greater in H1D. Cloud shortage? Lower part of the column is more stable in HIRLAM

#### H1D/COBEL. Daytime temperature



Daytime behaviour is "normal":Bias is small and stable with timeRmse increases with time

### H1D/COBEL. Night BL sp. humidity



#### "Normal" behaviour for the specific humidity H1D is slightly moister than COBEL

#### H1D/COBEL. Night BL IPW



#### H1D is slightly moister than COBEL. The difference comes from the initialisation.

#### H1D/COBEL. Night BL liquid water



Above 200 m, H1D presents less liquid water than COBEL  $\rightarrow$  higher cooling rate  $\rightarrow$  more liquid water at low levels (fog)

# H1D/COBEL. Night longwave radiation



#### (downward positive) H1D: less liquid water $\rightarrow$ more loss of longwave radiation

#### Net radiation at ground



Figure on the right is from the test period H1D overestimates both, the downward SW radiation and the upward LW radiation, probably because it underestimates cloudiness

# Low C&V conditions Low C&V conditions for LFPG: •Visibility < 600 m or •Ceiling < 200 ft

7.2% of observations during the analysed period (0.4% only low visibility reported, 2.9% only low clouds reported and 3.9% both). That is 240 hours

# Verification

| LOW<br>C&V<br>3-4 h<br>FCST                                                   | CI | H1D | <u>3-4h fcst.</u> Similar<br>performance. H1D:<br>higher POD and FAR.<br>Because its higher cooling |
|-------------------------------------------------------------------------------|----|-----|-----------------------------------------------------------------------------------------------------|
| POD                                                                           | 56 | 73  | rate?<br>Refore, COREL performs                                                                     |
| FAR                                                                           | 38 | 57  | better. Because its better<br>initialisation?                                                       |
| H1D: HH+06 / HH+07,<br>that is, 3-4 h after ending<br>the assimilation cycle. |    |     | Later. H1D performs<br>better. Because its better<br>treatment of horizontal<br>unhomogeneity?      |

 $\mathbf{O}$ 

 $\sim$ 

# Conclusions

**•**SCM, in particular COBEL-ISBA and H1D, are useful tools for short-term C&V forecast.

**•**The initialisation is very important. Future development of H1D should, probably, focus on it.

**•COBEL** development should, probably, focus on its treatment of horizontal unhomogeneity.

•Model intercomparison experiments are excellent tools to identify the weakest part of a model, to find out which aspect is worth to work on.