A new equation set for convective parameterization, intermediate between present parameterizations and superparameterizations: 3MT-Fully prognostic. Jean-Marcel Piriou, Météo-France / CNRM. NETFAM Workshop, Toulouse, 12-14 March 2007.

GCM (Global Circulation Models, ~50km) or LAM (Limited Area Models, ~5km): Parameterized: deep convection, shallow convection (both prec. and nonprec.), dry convection (thermals).

CSRM (Cloud System-Resolving Models, ~2.5km): Explicit: some deep convective towers. Parameterized: shallow convection (both prec. and non-prec), dry convection.

LES (Large Eddy Simulations, ~100m): Explicit: convective towers (both prec. and non-prec.), large dry eddies.

Convection models: computation time, perspectives.

	GCM, LAM CSRM		LES		
Deep conv. <i>Cu congestus, Cb</i>	Parameterized	Explicit	Explicit Explicit		
Shallow conv. (both prec. and non-prec.) <i>Cu, Sc</i>	Parameterized	Parameterized			
Dry conv. <i>Thermal</i> s	Parameterized	Parameterized	Explicit		

Convection models: computation time, perspectives.

	GCM, LAM	CSRM	LES		
Computation time, global prediction	1, 50	10000	10^9		
Deep conv. <i>Cu congestus, Cb</i>	Parameterized	Explicit	Explicit		
Shallow conv. (both prec. and non-prec.) <i>Cu, Sc</i>	Parameterized	Parameterized	Explicit		
Dry conv. <i>Thermal</i> s	Parameterized	Parameterized	Explicit		

Convection models: computation time, perspectives.

	GCM, LAM	CSRM	LES		
Computation time, global prediction	1, 50	10000	10^9		
In operations, global	Now, 2016	2027	2052		
In operations, limited area (say, France)	Now	2009	2033		
Deep conv. <i>Cu congestus, Cb</i>	Parameterized	Explicit	Explicit		
Shallow conv. (both prec. and non-prec.) <i>Cu, Sc</i>	Parameterized	Parameterized	Explicit		
Dry conv. <i>Thermals</i>	Parameterized	Parameterized	Explicit		

Convective parameterizations

Traditional param.

Arakawa Schubert 1974

3MT

3MT-FP

CSRM-SCA J.-I. Yano

Superparameterization Laprise, Bechtold, Grabowski, Randall, Khairoutdinov

CSRM-SCA: a compressed CSRM

CSRM-SCA J.-I. Yano

Work done by Jun-Ichi Yano (Météo-France and CNRS),

- Application of the segmentally-constant approximation (SCA) onto the full CSRM system.
- Parameterization to decide creating new cells, fusing close cells → adaptative grid.
- If all cells active, CSRM-SCA becomes a standard CSRM model.

3MT: main features

Initiated in 2003, Separating Microphysics from Transport terms (MT), in grid-scale equations

- central role to microphysics, improve causal link
 between processes: condensation,
 autoconversion, precipitation evaporation →
 entrainment rates, ... Prognostic microphysics,
 updraft/downdraft area fraction, vertical velocity,
- share microphysics between param. and CSRM,
- relax cloud mass budget stationnarity assumption,
- microphysics cascading inside time-step (no double counting between resolved and subgridscale).

3MT: results

3MT: Modular Multiscale Microphysics and Transport.

7 km

4 km

2 km

10/09/2005 Case Study. 1-hour Precipitation (mm). Source Gerard (QJRMS 2007).

Under progress: endeavour entering operations for NWP in 2008, in LAM and GCM, Meteo-France and ALADIN partners.

J.-M. Piriou and J.-L. Redelsperger and J.-F. Geleyn and J.-P. Lafore and F. Guichard, « An approach for convective parameterization with memory, in separating microphysics and transport in gridscale equations », J. Atmos. Sci. 2007, accepted

L. Gerard and J.-F. Geleyn, « Evolution of a subgrid deep convection parameterization in a limited area model with increasing resolution », (QJRMS 2005)

L. Gerard, « An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales » (QJRMS 2007, accepted)

Next step 3MT-FP (Fully Prognostic)

Main objectives:

- as many prognostic variables as in the host model (no closure on massflux),
- endeavour using convective equations closer to those of CSRMs (where possible),
- increase numerical complexity, decrease conceptual complexity,
- multi-modal approach (like AS74),
- parameterization only for E, D, momentum,
- HOPE: better than traditional parameterizations, cheaper than superparameterizations!

3MT-FP: equation set, mode #i

3MT-FP (Fully Prognostic): n interactive prognostic modes.

		_							transport horiz		transport vert
$\frac{1}{\overline{\rho}}$	$\frac{\partial \overline{\rho}^i \sigma_i}{\partial t})_{cp}$	=					microphysique	2	$\sum_{j \neq i} (E_{ij} - D_{ij})$	-	$\frac{1}{\overline{\rho^{i}}}\frac{\partial}{\partial z}\overline{\rho^{i}}\sigma_{i}\overline{w^{i}}$
$\frac{1}{\overline{\rho}^i} \left(\frac{\hat{C}}{\overline{\rho}}\right)$	$\frac{\partial \overline{\rho}^i \sigma_i \overline{q_v}^i}{\partial t})_{cp}$	=	$-\overline{C}^i$	+	$\overline{E_C}^i$	+	$\overline{E_P}^i$	+	$\sum_{j \neq i} (E_{ij} \overline{q_v}^j - D_{ij} \overline{q_v}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w}^i\overline{q_v}^i$
$\frac{1}{\overline{\rho}^i} \left(\frac{\dot{c}}{\overline{c}}\right)$	$\frac{\partial \overline{\rho}^i \sigma_i \overline{q_l}^i}{\partial t})_{cp}$	=	\overline{C}^i	_	$\overline{E_C}^i$	_	\overline{A}^i	+	$\sum_{j \neq i} (E_{ij}\overline{q_l}^j - D_{ij}\overline{q_l}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w}^i\overline{q_l}^i$
$\frac{1}{\overline{\rho}^i} (\frac{\hat{c}}{2})$	$\frac{\partial \overline{\rho}^i \sigma_i \overline{q_r}^i}{\partial t})_{cp}$	=	\overline{A}^i			_	$\overline{E_P}^i$	+	$\sum_{j \neq i} (E_{ij}\overline{q_r}^j - D_{ij}\overline{q_r}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w_s}^i\overline{q_r}^i$
$\frac{1}{\overline{\rho}^i} \Big($	$\frac{\partial \overline{\rho}^i \sigma_i \overline{s}^i}{\partial t})_{cp}$	=	\overline{LC}^i	_	$\overline{LE_C}^i$	_	$\overline{LE_P}^i + \overline{H}^i$	+	$\sum_{j \neq i} (E_{ij}\overline{s}^j - D_{ij}\overline{s}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w}^i\overline{s}^i$
$\frac{1}{\overline{\rho}^i} \Big(\frac{1}{\overline{\rho}} \Big)$	$\frac{\partial \overline{\rho}^i \sigma_i \overline{u}^i}{\partial t})_{cp}$	=	$\overline{S_u}^i$					+	$\sum_{j \neq i} (E_{ij}\overline{u}^j - D_{ij}\overline{u}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w}^i\overline{u}^i$
$\frac{1}{\overline{\rho}^i} \left(\frac{\dot{c}}{\overline{\rho}}\right)$	$\frac{\partial \overline{\rho}^i \sigma_i \overline{w}^i}{\partial t})_{cp}$	=	$\overline{S_w}^i$					+	$\sum_{j \neq i} (E_{ij}\overline{w}^j - D_{ij}\overline{w}^i)$	-	$\frac{1}{\overline{\rho}^i}\frac{\partial}{\partial z}\overline{\rho}^i\sigma_i\overline{w}^i\overline{w}^i$
				sou	rces/puit	s de v	vent horiz. et vert.		(2)	<u></u>	

n subgrid-scale modes, i=1,n. For each mode: equation set above. Mass (sigma), water vapour, cloudy condensates, prec. condensates, heat, horizontal and vertical wind. Red: microphysics: condensation, evaporation, autoconversion, collection, sensible exchanges between precipitation and surr. air, etc.

Description. 3MT-FP closer to primitive equations, still a param. → collaboration, link to superparamétrisations, comp. time.

More about 3MT-FP (Fully Prognostic) and compressed CSRM...

CSRM-SCA J.-I. Yano

J.-I. Yano and J.-M. Piriou, « Deduction into the massflux convective parameterization from a full Cloud-Resolving Model (CRM) system under a segmentally-constant approximation (SCA) », To be submitted in a few days!

Conclusions, perspectives

- 3MT: a 3-year collective work, runs in 3D, pre-operational (2007 in ALADIN Prague, 2008 in ARPEGE ALADIN in Toulouse).
- A consistent hierarchy of equation systems, for convective parameterization, between traditional parameterization and superparameterization. 3MT-FP and CRM-SCA-compressed still need to be tested!

Superparameterization

Fin