Parametrisation of dry and cloudy thermals in Arome and Méso-NH

Julien Pergaud Valery Masson Sylvie Malardel

- ✓NWP mesoscale modele Arome (dx=2.5 km, dt=60 s)
- ✓ Operational in 2008
- ✓ Hypothesis : the deep convection is resolved by the dynamics +detailed microphysics
- ✓ The current shallow version of KFB (originally developped in Méso-NH) shows some limitations :
 - Cloudy updraft only
 - Closure in CAPE seems not the best for shallow clouds
 - No momentum mixing
 - The link with the statistical cloud scheme is problematic

≻A new scheme largely inspired by P.Soares scheme (Soares et al, 2004)

Main choices for the updraft

- One single updraft (dry and possibly cloudy above) starting just above the surface
- Mixing of thermodynamic moist conservative variables
- Mixing of momentum (considered as a conservative variable for the time being)
- The entrainement/detrainement formulation are different below and above the LCL
- The updraft fraction is an output of the scheme

Entrainement/detrainement below the LCL (Lappen et Randall ,2001)

$$\begin{cases}
\varepsilon = \frac{C_{E} M_{u}}{L_{dn}} + C_{w} w_{u}^{2} \\
\delta = \frac{C_{D} M_{u}}{L_{up}} \\
\Delta M_{u} = \varepsilon - \delta \\
\Delta \phi_{u} = \varepsilon \overline{\phi} - \delta \phi_{u}
\end{cases}$$

Equation for the updraft vertical velocity

$$\frac{\partial \left(\frac{1}{2} w_u^2\right)}{\partial z} = a Buo - b\varepsilon$$

Entrainement/detrainement above the LCL (Kain et Fritsch, 1990)

Stationnary cumuli in the Barbados region (Bomex)

Shallow cumuli : subgrid cloud scheme

Closure:
$$q_{cu} \Longrightarrow \overline{q}_c$$
?

Direct cloud scheme :

$$\alpha = \frac{M_u}{\rho w_u} = \text{updraft fraction}$$
$$\overline{r_c} = c_1 \times \alpha \times r_{c_u}$$
$$N_{ray} = c_2 \times \alpha$$

Rain in shallow cumulus : subgrid autoconversion

$$\Delta r_{r_u} = \max(0, \frac{\overline{r_c}}{N_r} - XAUCV)$$
$$\Delta \overline{r_r} = N_r \times \Delta r_{r_u}$$

Autoconversion is the only subgrid process in the microphysics

Impact of momentum mixing

Stationnary cumuli in the Barbados region (Bomex)

Diurnal cycle of shallow cumuli (Eurocs/ARM/Cu)

Precipitating shallow convection in the Barbados region (Rico)

(Méso-NH LES, new setup, F. Couvreux)

Precipitating shallow convection in the Barbados region (Rico)

Precipitating shallow convection in the Barbados region (Rico) Impact of MF momentum mixing

Mixing too strong, especially in the sublayer cloud : need to take into account the pressure drag?

Summary

- Implantation of a MF single updraft scheme for shallow convective transport in Méso-NH and Arome
- Modification of the cloud scheme and of the autoconversion in the microphysics
- Dry plumes and cloudy/precipitating shallow cumuli are well reproduced with the 1D versions of the models
- Some tunning are still needed (in particumar to adjust the feedback between the entrainment and the updraft vertical velocity)
- Try a more physical formulation for wind mixing
- 3D validations started with case studies and with a more systematic comparison with Cloudnet observation on Cabauw (Cu but also Sc)