

Workshop on Cloudy Boundary Layer

Introduction

Aerosol Impacts on BL Clouds Observations and Modelling

J. L. Brenguier Météo-France

Acknowledgements: O. Geoffroy, C. Lac, V. Masson, O. Thouron, I. Sandu

Review of past activities

Comments & Recommendations

Workshop on Cloudy Boundary Layer

Physical Processes and Feedbacks

Workshop on Cloudy Boundary Layer

Workshop on Cloudy Boundary Layer

CCN Activation

Workshop on Cloudy Boundary Layer

CCN Activation

Comments & Recommendations Both natural and anthropogenic aerosol produce CCNs.

Increasing the number concentration of CCNs generally yields to an increase of the CDNC, though not proportional !

CCN properties are well understood and well simulated when the aerosol chemical composition is known.

Organic matter however modifies significantly the CCN properties of the aerosol, and the impacts are not well understood.

In the prediction of CDNC from aerosol properties, most of the uncertainty arises from the vertical velocity.

How does CCN activation impact cloud microphysics ??

Workshop on Cloudy Boundary Layer

Aerosol CCN Properties

Warm Microphysics BL Clouds (short time scale)

Workshop on Cloudy Boundary Layer

Aerosol CCN Properties

Warm Microphysics BL Clouds (long time scale)

Review of past activities

Workshop on Cloudy Boundary Layer

Workshop on Cloudy Boundary Layer

Review of past activities

Aerosol CCN Properties

Warm Microphysics Boundary Layer Clouds (short time scale)

Brenguier et al., 2003

Workshop on Cloudy Boundary Layer

Aerosol CCN Properties

Warm Microphysics

The impact of CCN on warm cloud microphysics is known since the pioneering work of Gunn and Phillips [1957], Squires [1958], Squires and Twomey [1961], Warner [1968] and Warner and Twomey [1967].

Recent field (airborne) experiments have improved our knowledge of the relationship between aerosol CCN properties and CDNC, and of additional physical processes that may modulate the impact on cloud microphysics (entrainment-mixing, precipitation scavenging)

Comments & Recommendations

Workshop on Cloudy Boundary Layer

Review of past activities

1st AIE

Cloud radiative properties

Conover, 1966; Coakley et al., 1987; Radke et al., 1989; King et al., 1993; Ferek et al., 1998; Ackerman et al., 2000; Durkee et al., 2001; Hobbs and Garrett, 2000

Workshop on Cloudy Boundary Layer

Comments & Recommendations Warm microphysics

Cloud radiative properties

1st AIE

Ship tracks are obviously characterized by a higher CDNC than the environment.

Are they brighter because of higher CDNC and smaller droplets at constant LWP, hence a higher optical thickness, or also because they are thicker ?

In situ measurements are contradictory !

Workshop on Cloudy Boundary Layer

Pawlowska and Brenguier, 2000 (top-left) and Schüller et al., 2003 (bottom-left); Brenguier et al., 2000 right)

Workshop on Cloudy Boundary Layer

1st AIE

Review of past activities

Cloud radiative properties

Workshop on Cloudy Boundary Layer

Review of past activities	and the second
Carlos and	Print the star
	and the second second
Contraction of the second	
	- War

1st AIE

Cloud radiative properties

Impact of entrainmentmixing processes

Cloud	CF	LWP	H	Nad	Mixing	A_{Vis}	PP bias
scene	%	g/m²	m	cm ⁻³ scheme		%	%
1	100	83	286	50	homogeneous	47	-2
				50	inhomogeneous	44	-8
				256	homogeneous	65	-2
					inhomogeneous	62	-7
				400	homogeneous	70	-2
					inhomogeneous	67	-6
2		8	76	50	homogeneous	11	-3
					inhomogeneous	9	-18
	63			256	homogeneous	17	-1
					inhomogeneous	13	-23
				400	homogeneous	20	-1
					inhomogeneous	15	-26
3		12	77	50	homogeneous	11	-3
	50				inhomogeneous	9	-23
				256	homogeneous	17	-4
					inhomogeneous	12	-31
				400	homogeneous	19	-3
					inhomogeneous	14	-31
4	17	12	52	50	homogeneous	8	-1
					inhomogeneous	7	-11
				256	homogeneous	10	-1
					inhomogeneous	8	-17
				400	homogeneous	11	-1
					inhomogeneous	9	-19

Chosson et al., 2006

Workshop on Cloudy Boundary Layer

Cloud radiative properties

1st AIE

Recent field (1997) experiments have validated the expected (1977) relationship between microphysical changes and cloud albedo change (Twomey hypothesis)

The LWP/CDNC relationship with optical depth/effective radius may be modulated by additional processes such as entrainment/mixing and precipitation scavenging, though their radiative impact is not clear yet !!)

Comments & Recommendations

Workshop on Cloudy Boundary Layer

Onset of precipitation

Review of past activities

Workshop on Cloudy Boundary Layer

Onset of precipitation

Review of past activities

At the scale of a cloud system (few tens of km), the precipitation rate scales with the LWP and CDNC ACE-2 (Pawlowska and Brenguier, 2003) EPIC (Comstock et al., 2004) DYCOMS-II (van Zanten et al., 2005)

	N _i ((×1	(m^{-3}) (0^{-6})	H _i (m)		$ \begin{array}{c} W_{i} (\text{kg m}^{-2}) \\ (\times 10^{3}) \end{array} $		$\begin{array}{c} R_i \ (\text{kg m}^{-2} \text{ s}^{-1}) \\ (\times 10^6) \end{array}$		Formulation	
ACE-2	N	act	Hg		$\frac{1}{2}C_{w}H_{g}^{2}$		<r></r>		$R_1 = 0.3 \cdot 10^6 \cdot \frac{W_1^2}{10^6} - 10^{-6}$	
i = 1	min : 51	max : 256	min : 167	max : 272	min : 27	max : 74	min : 0,6	max : 18,6	N_1	
EPIC $i = 2$	<n></n>		/ <w></w>		<r<sub>base></r<sub>		$R_2 = 24.37 \cdot 10^9 \cdot (\frac{W_2}{N_2})^{1.75}$			
DYCOMS-II	<]	<n></n>		$\langle H \rangle \qquad \frac{1}{2}C_w \langle H \rangle^2$		<r<sub>base></r<sub>		$R_2 = 21.5 \cdot 10^3 \cdot \frac{W_3^{1.5}}{W_3} - 2.3 \cdot 10^{-6}$		
i = 3	min : 58	max : 254	min : 265	max : 515	min : 70	Max : 265	min : 0,5	max : 19,1	, N ₃	

Workshop on Cloudy Boundary Layer

ONSET of precipitation

Comments & Recommendations

CDNC obviously affects the **ONSET** of precipitation

This hypothesis was well established 50 years ago (Fletcher, Squires, and Bowen, 1962)

Recent experiments provide more quantitative assessments of these earlier results

Workshop on Cloudy Boundary Layer

Workshop on Cloudy Boundary Layer

15 20 25

r_{eff} (µm)

30

Temperature [C]

0 5 10

Toulouse, France, 12-14 March 2007 J. L. Brenguier Météo-France

Ayers, 2006

Observational studies of the aerosol impact on BL clouds

Comments & Recommendations

Observations have clearly established that the aerosol impacts state parameters of the cloud (CDNC, microphysical profiles, albedo).

There are no convincing observations of an aerosol impact on the cloud life cycle and precipitation.

When different aerosol properties are observed, that necessarily implies different air masses, hence different thermodynamical forcing.

The expected aerosol impacts are smaller than the impacts of thermodynamical forcing changes that are not presently measurable : a 1 % decrease of the relative humidity in the BL makes the different between cloud and no cloud !!

Workshop on Cloudy Boundary Layer

Modelling studies of the aerosol impact on BL clouds

Comments & Recommendations The aerosol impact on BL clouds can be examined using LES models with state-of-the-art parameterizations of dynamics, microphysics and radiation.

The external forcing are not measurable, but they can be tuned for the model to simulate the expected cloud properties.

Workshop on Cloudy Boundary Layer

Tuning LES models

MICROPHYSICS

(Chosson et al., 2007)

Workshop on Cloudy Boundary Layer

activities

Tuning LES models

RADIATION

Workshop on Cloudy Boundary Layer

LES modelling to explore Aerosol-Cloud Interactions

Review of past activities

The aerosol impact on BL clouds dynamics is not straightforward.

Albrecht (1989) : CDNC $7 \Rightarrow$ droplet size \lor \Rightarrow precipitation $\lor \Rightarrow$ LWP 7.

Nighttime : Ackerman (2004) : CDNC ↗ ⇒ droplet size ↘ ⇒ precip. ↘ ⇒ entrainment ↗ ⇒ LWP ↗ or ↘ (depending on LSF).

Diurnal cycle, during nighttime same as Ackerman, but during daytime : Sandu et al. (2007) : CDNC ↗ ⇒ droplet size ↘ ⇒ precip. ↘ ⇒ entrainment ↗ ⇒ LWP ↘ (irrespective of LSF).

Workshop on Cloudy Boundary Layer

LES modelling for the development of GCM parameterizations

Workshop on Cloudy Boundary Layer

Sub-grid bulk microphysics

Comments & Recommendations In bulk parameterizations, the hydrometeors spectrum is reduced to 2 categories : droplets and drops, represented by only 4 (q_c , q_r , N_c , N_r) independent variables.

The collection process is parameterized with two schemes : auto-conversion (collection of droplets to produce drops) and accretion (droplet collection by a drop), and the conversion rates are derived by comparison with solutions of the collection equation. This is valid for scales at which the particles co-exist in the same volume.

Bulk parameterizations have been used in GCMs by tuning the coefficient for increasing the collection efficiency in order to account for the smoothing effect of the coarse resolution.

This may be valid as long as there are no feedbacks on cloud dynamics.

Sub-grid bulk microphysics

Comments & Recommendations Bulk parameterizations have different number of variables, different limits between droplets and drops, and different way of dealing with the sharp increase of collection at the limit.

	Number of variables	Limit	Size distribution assumption	Auto- conversion threshold	Threshold applied on	Collision kernel
Berry (1968)	2	$\sim 40 \ \mu m$	Gamma law (28 spectra)	none	/	Davis & Sartor (1967)
Kessler (1969)	2	?	monodispersed	Heaviside	q _c	Fixe
Berry et Reinhardt (1974) Ziegler (1985) Cohard et Pinty (2000a)	2 4 4	41 µm	Modifed gamma law (~30 spectra)	Heaviside	A function of r_v et var(x)	Hocking & Jonas (1970)
Sundqvist (1978)	2			Exponential	q _c	?
Manton et Cotton (1977) Tripoli and Cotton (1980)	2		monodispersed	Heaviside	r _v	E _c fixed Stokes velocity
Baker (1993)	2			Heaviside	r _v	E _c fixed Stokes velocity
Beheng (1994)	2	40 µm	Gamma law.	none	/	Hall (1980)
Khairoutdinov et Kogan (2000)	4	25 µm	100000 spectra from bin LES	none	/	Hall (1980)
Seifert et Beheng (2001)	4	$\sim 40 \ \mu m$	Gamma law	none	/	Long (1974)
Liu and Daum (2004)	2	20 µm	Gamma law	Heaviside	r ₆	Long (1974)

Workshop on Cloudy Boundary Layer

Sub-grid bulk parameterizations for GCMs

Comments & Recommendations

LES replicate observational evidences of scaling between precipitation rate, LWP and CDNC.

1-D simulations with the same LWP and CDNC underestimate the precipitation rate.

Workshop on Cloudy Boundary Layer

CONCLUSIONS

Comments & Recommendations The impacts of aerosols on cloud dynamics (2nd indirect and semi-direct effects) are not directly observable

The obstacles are very similar to those weather modification has been facing for more than 50 years (WMO reports)

LES models offer a powerful alternative and they show how tightly coupled is the aerosol/cloud system.

To simulate aerosol impacts at the global scale, new (subgrid) parameterizations of cloud microphysics shall be developed

Any, even small, modification of the life cycle of clouds will have a strong impact on climate, and climate has a strong impact on clouds

What is the main source of cloud life time modifications: aerosol or the climate itself ?????????

Workshop on Cloudy Boundary Layer

??? HYDROLOGICAL CYCLE ???

Ocean and land surface

Workshop on Cloudy Boundary Layer

CCN Activation

Workshop on Cloudy Boundary Layer