Stable Boundary Layer Parameterization

Sergej S. Zilitinkevich

Meteorological Research, Finnish Meteorological Institute, Helsinki, Finland

Atmospheric Sciences and Geophysics, University of Helsinki, Finland

Nansen Environmental and Remote Sensing Centre, Bergen, Norway

Seminar: New developments in Modelling ABLs for NWP 17 June 2008

Key references

- Zilitinkevich, S., and Calanca, P., 2000: An extended similarity-theory for the stably stratified atmospheric surface layer. *Quart. J. Roy. Meteorol. Soc.*, **126**, 1913-1923.
- Zilitinkevich, S., 2002: Third-order transport due to internal waves and non-local turbulence in the stably stratified surface layer. *Quart, J. Roy. Met. Soc.* **128**, 913-925.
- Zilitinkevich, S.S., Perov, V.L., and King, J.C., 2002: Near-surface turbulent fluxes in stable stratification: calculation techniques for use in general circulation models. *Quart, J. Roy. Met. Soc.* **128**, 1571-1587.
- Zilitinkevich S. S., and Esau I. N., 2005: Resistance and heat/mass transfer laws for neutral and stable planetary boundary layers: old theory advanced and re-evaluated. *Quart. J. Roy. Met. Soc.* 131, 1863-1892.
- Zilitinkevich, S., Esau, I. and Baklanov, A., 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. *Quart. J. Roy. Met. Soc.* 133, 265-271.
- Zilitinkevich, S. S., and Esau, I. N., 2007: Similarity theory and calculation of turbulent fluxes at the surface for stably stratified atmospheric boundary layers. *Boundary-Layer Meteorol.* **125**, 193-296.
- Zilitinkevich, S.S., Elperin, T., Kleeorin, N., and Rogachevskii, I., 2007: Energy- and flux-budget (EFB) turbulence closure model for the stably stratified flows. Part I: Steady-state, homogeneous regimes. *Boundary-Layer Meteorol.* **125**, 167-192.
- Zilitinkevich, S. S., Mammarella, I., Baklanov, A. A., and Joffre, S. M., 2008: The effect of stratification on the roughness length and displacement height. *Boundary-Layer Meteorol.* In press

State of the art

Surface fluxes

Surface layer concept:

Local M-O (1954) scaling:

Roughness length $z_{0u} \sim h_0$:

SBL height

Local (RM,1935)⇔Z(1974):

<u>Closure</u>

Down-gradient, Kolmogorov (1941): TKE and ,e.g., \mathcal{E} -budgets:

Improvements:

Capping inversions

<u>Data</u>

Mid latitudes \rightarrow residual layers (N=0) \rightarrow SBL = nocturnal BL

 τ , F_{θ} , F_{q} = constant $L = -u_{*}^{3} / F_{bs}$ no stability effect

 $N|_{\text{free-flow}}$ neglected

 $K_M, K_H, K_D \sim E_K^{1/2} l_T$ TPE disregarded to avoid Ri_{cr} and correct Pr_{turb} low interest / no parameterization

Basic types of the stable and neutral ABLs

- Until recently ABLs were distinguished accounting only for $F_{bs} = F_*$: neutral at $F_*=0$ stable at $F_*<0$
- Now more detailed classification: truly neutral (TN) ABL: F_{*}=0, N=0 conventionally neutral (CN) ABL: F_{*}=0, N>0 nocturnal stable (NS) ABL: F_{*}<0, N=0 long-lived stable (LS) ABL: F_{*}<0, N>0
- Realistic surface flux calculation scheme should be based on a model applicable to all these types of the ABL

Content

- Revision of the similarity theory for stable and neutral ABLs
- Analytical approximation of mean profiles across the ABL
- Validation against LES and observational data (to be proceeded)
- Diagnostic & prognostic ABL height equations (to be included in operational routines)
- Surface-flux & ABL-height schemes for use in operational models

Classical similarity theory and

current surface-flux schemes (based on the SL-concept)

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Neutral stratification (no problem)

From logarithmic wall law:

$$\frac{dU}{dz} = \frac{\tau^{1/2}}{kz}, \quad \frac{d\Theta}{dz} = \frac{-F_{\theta}}{k_T \tau^{1/2} z}, \quad U = \frac{\tau^{1/2}}{k} \ln \frac{z}{z_{0u}}, \quad \Theta - \Theta_0 = \frac{-F_{\theta}}{k_T \tau^{1/2}} \ln \frac{z}{z_{0u}}$$

k, k_T von Karman constants; z_{0u} aerodynamic roughness length for momentum; Θ_0 aerodynamic surface potential temperature (at z_{0u}) [$\Theta_0 - \Theta_s$ through z_{0T}]

It follows:
$$\tau_1^{1/2} = kU_1(\ln z / z_{0u})^{-1}$$
, $F_{\theta 1} = -kk_TU_1(\Theta_1 - \Theta_0)(\ln z / z_{0u})^{-2}$
 $\tau_1 = \tau_*$, $F_{\theta 1} = F_*$ when $z_1 \approx 30$ m << h \rightarrow OK in neutral stratification

Stable stratification: <u>current theory</u> (i) local scaling, (ii) log-linear Θ -profile \rightarrow <u>both questionable</u>

- When z_1 is much above the surface layer $\rightarrow \tau_1 \neq \tau_*$, $F_{\theta 1} \neq F_*$
- Monin-Obukhov (MO) theory $\rightarrow L = \frac{\tau^{3/2}}{-\beta F_{\theta}}$ (neglects other scales) $\rightarrow k_{\pi} \tau^{1/2} z \, d\Theta$

$$\frac{kz}{\tau^{1/2}}\frac{dU}{dz} = \Phi_M(\xi), \quad \frac{k_T\tau^{1/2}z}{F_\theta}\frac{d\Theta}{dz} = \Phi_H(\xi), \quad \text{where} \quad \xi = \frac{z}{L}$$

- $\Phi_M = 1 + C_{U1}\xi$, $\Phi_H = 1 + C_{\Theta 1}\xi$ from *z*-less stratification concept $U = \frac{u_*}{k} \left(\ln \frac{z}{z_{u0}} + C_{U1} \frac{z}{L_s} \right)$, $\Theta - \Theta_0 = \frac{-F_*}{k_T u_*} \left(\ln \frac{z}{z_{u0}} + C_{\Theta 1} \frac{z}{L_s} \right)$
- $\operatorname{Ri} = \beta (d\Theta/dz) (dU/dz)^{-2} \rightarrow \operatorname{Ri}_{\mathcal{C}} = k^2 C_{\Theta 1} k_T^{-1} C_{U1}^{-2}$ (unacceptable)
- $C_{U1} \sim 2$, $C_{\Theta 1}$ also ~ 2 (factually increases with $z \mid L$)

- Stable stratification: <u>current parameterization</u> To avoid critical Ri modellers use empirical, heuristic correction functions to the neutral drag and heat/mass transfer coefficients
- Drag and heat transfer coefficients: $C_D = \tau / (U_1)^2$, $C_H = -F_{\theta s} / (U_1 \Delta \Theta)$
- Neutral: C_{Dn}, C_{Hn} from the logarithmic wall law
- To account for stratification, correction functions (dependent only of Ri):

 $f_D(\operatorname{Ri}_1) = C_D / C_{Dn}$ and $f_H(\operatorname{Ri}_1) = C_H / C_{Hn}$

 $Ri_1 = \beta(\Delta \Theta)z_1/(U_1)^2$ (surface-layer "Richardson number") - given parameter

SS Zilitinkevich et al., 2002: Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general-circulation models. *Boundary-layer Meteorol.* **128**, 1571-1587

Figure 1. The correction functions (a) to the drag coefficient, f_D , and (b) to the heat and mass-transfer coefficients, $f_H = f_M$, versus the surface-layer bulk Richardson number Ri, see Eq. (7). Crosses are data from measurements at Halley, Antarctica. The correction functions from Louis *et al.* (1982) are shown by dashed lines.

$$C_D \equiv \frac{\tau_s}{u^2}, \quad C_H \equiv -\frac{F_{\theta s}}{u\Delta\theta}, \quad C_M \equiv -\frac{F_{\theta s}}{u\Delta q}, \qquad Ri \equiv \frac{(\beta\Delta\theta + 0.61g\Delta q)z_1}{u^2} \qquad f_D = C_D/C_{Dn}, \quad f_H = C_H/C_{Hn}, \quad f_M = C_M/C_{Mn}$$

SS Zilitinkevich et al., 2002: Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general-circulation models. *Boundary-layer Meteorol.* **128**, 1571-1587

Figure 2. The same as in Fig. 1, but for Sodankyla, Arctic Finland: (a) f_D and (b) $f_H = f_M$. Crosses are measurements at this site/

Revised similarity theory and SI flux-profile relationship

Revised similarity theory

Zilitinkevich, Esau (2005) →

University of Helsinki

besides Obukhov's $L = -\tau^{3/2} (\beta F_{\theta})^{-1}$ two additional length scales:

non-local effect of the free flow static stability

the effect of the Earth's rotation

 $N \sim 10^{-2} \text{ s}^{-1}$ – Brunt-Väisälä frequency at z > h, f – Coriolis parameter $\tau = \tau(z)$

Interpolation:
$$\frac{1}{L_*} = \left[\left(\frac{1}{L} \right)^2 + \left(\frac{C_N}{L_N} \right)^2 + \left(\frac{C_f}{L_f} \right)^2 \right]^{1/2} \text{ where } C_N = 0.1 \text{ and } C_f = 1$$

Velocity gradient (conventionally neutral ABLs!)

 $\Phi_{\rm M} = kz\tau^{-1/2} dU/dz$ vs. z/L (a), z/L_* (b) x <u>nocturnal</u>; o <u>long-lived</u>; \Box <u>conv. neutral</u>

Vertical profiles of turbulent fluxes

Turbulent fluxes: data points – LES; dashed lines – atmospheric data, Lenshow, 1988); solid lines $\tau/u_*^2 = \exp(-\frac{8}{3}\varsigma^2)$, $F_{\theta}/F_{\theta} = \exp(-2\varsigma^2)$; $\zeta = z/h$. ABL height h = ?

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

New mean-gradient formulation (no critical Ri)

Flux Richardson number is limited:

$$\operatorname{Ri}_{f} = \frac{-\beta F_{\theta}}{\tau dU/dz} > \operatorname{Ri}_{f}^{\infty} \approx 0.2$$

Gradient Richardson number becomes

$$\operatorname{Ri} = \frac{\beta d\Theta / dz}{\left(\frac{dU}{dz} \right)^2} = \frac{k^2}{k_T} \frac{\xi \Phi_H(\xi)}{\left(1 + C_{U1}\xi\right)^2}$$

To assure no Ri-critical, ξ -dependence of Φ_H should be stronger then linear.

Hence asymptotically $\frac{dU}{dz} \rightarrow \frac{\tau^{1/2}}{\operatorname{Ri}_{f}^{\infty}L}$, and interpolating $\Phi_{M} = 1 + C_{U1}\xi$

Including CN and LS ABLs:
$$\Phi_M = 1 + C_{U1} \frac{z}{L_*}, \quad \Phi_H = 1 + C_{\Theta 1} \frac{z}{L_*} + C_{\Theta 2} \left(\frac{z}{L_*}\right)^2$$

 Φ_M vs. $\xi = z / L_*$, after LES DATABASE64 (all types of SBL). Dark grey points for *z*<*h*; light grey points for *z*>*h*; the line corresponds to $C_{U1} = 2$.

 Φ_H vs. $\xi = z / L_*$ (all SBLs). Bold curve is our approximation: $C_{\Theta 1} = 1.8$, $C_{\Theta 2} = 0.2$; thin lines are $\Phi_H = 0.2\xi^2$ and traditional $\Phi_H = 1+2\xi$.

Ri vs. $\xi = z/L$, after LES and field data (SHEBA - green points). Bold curve is our model with C_{U1} =2, $C_{\Theta 1}$ =1.6, $C_{\Theta 2}$ =0.2. Thin curve is Φ_H =1+2 ξ .

Mean profiles and <u>flux-profile relationships</u>

We consider wind/velocity and potential/temperature functions

$$\Psi_U = \frac{kU(z)}{\tau^{1/2}} - \ln \frac{z}{z_{0u}} \quad \text{and} \quad \Psi_\Theta = \frac{k_T \tau^{1/2} [\Theta(z) - \Theta_0]}{-F_\theta} - \ln \frac{z}{z_{0u}}$$

Our analyses show that Ψ_U and Ψ_Θ are universal functions of $\xi = z / L_*$

$$\Psi_U = C_U \xi^{5/6}$$
, $\Psi_{\Theta} = C_{\Theta} \xi^{4/5}$, with C_U =3.0 and C_{Θ} =2.5

The problem is solved given

(i) z_{0u} and (ii) τ and L as functions of z/h

Wind-velocity function $\Psi_U = k\tau^{-1/2}U - \ln(z/z_{0u})$ vs. $\xi = z/L_*$, after LES DATABASE64 (<u>all types of SBL</u>). The line: $\Psi_U = C_U \xi^{5/6}$, C_U =3.0.

Pot.-temperature function $\Psi_{\Theta} = k \tau^{-1/2} (\Theta - \Theta_0) (-F_{\theta})^{-1} - \ln(z/z_{0u})$ (all types of SBL). The line: $\Psi_{\Theta} = C_{\Theta} \xi^{4/5}$ with C_U =3.0 and C_{Θ} =2.5.

Analytical wind and temperature profiles (SBL)

$$\frac{kU}{\tau^{1/2}} = \ln \frac{z}{z_{0u}} + C_U \left(\frac{z}{L}\right)^{5/6} \left[1 + \frac{(C_N N)^2 + (C_f f)^2}{\tau} L^2\right]^{5/12}$$

$$\frac{k_T \tau^{1/2} (\Theta - \Theta_0)}{-F_{\theta}} = \ln \frac{z}{z_{0u}} + C_{\Theta} \left(\frac{z}{L}\right)^{4/5} \left[1 + \frac{(C_N N)^2 + (C_f f)^2}{\tau} L^2\right]^{2/5}$$

where C_N =0.1 and C_f =1. Given U(z), $\Theta(z)$ and N, these equations allow determining τ , F_{θ} , and $L = \tau^{3/2} (-\beta F_{\theta})^{-1}$, at the computational level z.

Remain to be determined:

ABL height and

Roughmess length

ABL height

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

References

- Zilitinkevich, S., Baklanov, A., Rost, J., Smedman, A.-S., Lykosov, V., and Calanca, P., 2002: Diagnostic and prognostic equations for the depth of the stably stratified Ekman boundary layer. *Quart, J. Roy. Met. Soc.*, **128**, 25-46.
- Zilitinkevich, S.S., and Baklanov, A., 2002: Calculation of the height of stable boundary layers in practical applications. *Boundary-Layer Meteorol.* **105**, 389-409.
- Zilitinkevich S. S., and Esau, I. N., 2002: On integral measures of the neutral, barotropic planetary boundary layers. *Boundary-Layer Meteorol.* **104**, 371-379.
- Zilitinkevich S. S. and Esau I. N., 2003: The effect of baroclinicity on the depth of neutral and stable planetary boundary layers. *Quart, J. Roy. Met. Soc.* **129**, 3339-3356.
- Zilitinkevich, S., Esau, I. and Baklanov, A., 2007: Further comments on the equilibrium height of neutral and stable planetary boundary layers. *Quart. J. Roy. Met. Soc.*, **133**, 265-271.

Factors controlling ABL height

Basic factors:

- Deepening due shear-generated turbulence
- Swallowing by earth's rotation and negative buoyancy forces:
 (i) flow-surface interaction, (ii) free-flow stability atmosphere

Additional factors:

- baroclinic shears (enhances deepening)
- large-scale vertical motions (both ways))
- temporal and horizontal variability

Strategy:

Basic regimes \rightarrow theoretical models \rightarrow general formulation

Neutral and stable ABL height

The dependence of the equilibrium conventionally neutral PPL height, h_E , on the freeflow Brunt-Väisälä frequency *N* after new theory (Z et al., 2007a, shown by the curve), LES (red) and field data (blue). Until recently the effect of *N* on h_E was disregarded

NERSC 11

General case

Stage II: Correlation: h_{theory} vs. h_{LES} after all available LES data

NERS 11

Modelling the stable ABL height

• Equilibrium

$$\frac{1}{h_E^2} = \frac{f^2}{C_R^2 \tau_*} + \frac{N |f|}{C_{CN}^2 \tau_*} + \frac{|f\beta F_*|}{C_{NS}^2 \tau_*^2} \quad (C_R = 0.6, C_{CN} = 1.36, C_{NS} = 0.51)$$

- Baroclinic: substitute $u_T = u_*(1 + C_0 \Gamma/N)^{1/2}$ for u_* in the 2nd term on the r.h.s.
- Vertical motions: $h_{E-\text{corr}} = h_E + w_h t_T$, where $t_T = C_t h_E / u_*$
- Generally prognostic equation (Z. and Baklanov, 2002):

$$\frac{\partial h}{\partial t} + \vec{U} \cdot \nabla h - w_h = K_h \nabla^2 h - C_t \frac{u_*}{h_E} (h - h_E) \qquad (C_t = 1)$$

Given *h*, the free-flow Brunt-Väisälä frequency is

$$N^{4} = \frac{1}{h} \int_{h}^{2h} \left(\beta \frac{\partial \Theta}{\partial z}\right)^{2} dz$$

Conclusions (surface fluxes and ABL height)

Background: Generalised scaling accounting for the free-flow stability, No critical Ri (Φ_H consistent with TTE closure) Stable ABL height model

Verified against

LES DATABASE64 (4 ABL types: TN, CN, NS and LS) Data from the field campaign SHEBA More detailed validation needed

Deliverable 1: analytical wind & temperature profiles in SBLs

Deliverable 2: surface flux and ABL height schemes for use in operational models

Roughmess length

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Stability dependences of the roughness length and displacement height

S. S. Zilitinkevich^{1,2,3}, I. Mammarella^{1,2}, A. Baklanov⁴, and S. M. Joffre²

- 1. Atmospheric Sciences, University of Helsinki, Finland
- 2. Finnish Meteorological Institute, Helsinki, Finland
- 3. Nansen Environmental and Remote Sensing Centre / Bjerknes Centre for Climate Research, Bergen, Norway
- 4. Danish Meteorological Institute, Copenhagen, Denmark

New developments in modelling ABLs for NWP 17 June 2008

Reference

S. S. Zilitinkevich, I. Mammarella, A. A. Baklanov, and S. M. Joffre, 2007: The roughness length in environmental fluid mechanics: the classical concept and the effect of stratification. *Boundary-Layer Meteorology.* In press.

Content

• Roughness length and displacement height:

$$u(z) = \frac{u_*}{k} \left[\ln \frac{z - d_{0u}}{z_{0u}} + \Psi_u \left(\frac{z}{L}\right) \right]$$

- No stability dependence of z_{0u} (and d_{0u}) in engineering fluid mechanics: neutral-stability z_0 = level, at which u(z) plotted vs. $\ln z$ approaches zero; $z_0 \sim \frac{1}{25}$ of typical height of roughness elements, h_0
- Meteorology / oceanography: h_0 comparable with MO length $L = \frac{u_*^3}{-\beta F_0}$
- Stability dependence of the actual roughness length, z_{0u} : $z_{0u} < z_0$ in stable stratification; $z_{0u} > z_0$ in unstable stratification

Surface layer and roughness length

- Self similarity in the surface layer (SL) Height-constant fluxes:
- u_* and z serve as turbulent scales: Eddy viscosity ($k \approx 0.4$)
- Velocity gradient

$$1.6h_{0} < z < 10^{-1}h$$

$$\tau \approx \tau \mid_{z=5h_{0}} \equiv u_{*}^{2}$$

$$u_{T} \sim u_{*}, l_{T} \sim z$$

$$K_{M} (\sim u_{T}l_{T}) = ku_{*}z$$

$$\partial U / \partial z = \tau / K_{M} = u_{*} / kz$$

Integration constant: $U = k^{-1}u_* \ln z + \text{constant} = k^{-1}u_* \ln(z/z_{0u})$

 z_{0u} (redefined constant of integration) is "roughness length" "Displacement height" d_{0u} $U = k^{-1}u_* \ln[(z - d_{u0})/z_{u0}]$ Not applied to the roughness layer (RL) $0 \le z \le 5h_0$

Parameters controlling z _{0u}

<u>Smooth surfaces</u>: viscous layer $\rightarrow z_{0u} \sim v / u_*$

<u>Very rough surfaces:</u> pressure forces depend on: obstacle height h_0 velocity in the roughness layer $U_R \sim u_*$

 $z_{0u} = z_{0u}(h_0, u_*) \sim h_0$ (in sand roughness experiments $z_{0u} \approx \frac{1}{30} h_0$)

No dependence on u_* ; surfaces characterised by z_{0u} = constant

<u>Generally</u> $z_{0u} = h_0 f_0 (\text{Re}_0)$ where $\text{Re}_0 = u_* h_0 / v$

Stratification at M-O length $L = -u_*^3 F_b^{-1}$ comparable with h_0

Stability Dependence of Roughness Length

For urban and vegetation canopies with roughness-element heights (20-50 m) comparable with the Obukhov turbulent length scale, $L_{,}$ the surface resistance and roughness length depend on stratification

Background physics and effect of stratification

Physically z_{0u} = depth of a sub-layer within RL ($0 < z < 1.6h_0$) with 90% of the velocity drop from $U_R \sim u_*$ (approached at $z \sim h_0$)

From
$$\tau = K_{M(RL)} \partial U / \partial z$$
, $\tau \sim u_*^2$ and $\partial U / \partial z \sim U_R / z_{0u} \sim u_* / z_{0u}$
$$\frac{z_{0u} \sim K_{M(RL)} / u_*}{z_{0u}}$$

 $K_M(RL) = K_M(h_0 + 0)$ from matching the RL and the surface-layer

Neutral: $K_M \sim u_* h_0 \Rightarrow$ classical formula $z_{0u} \sim h_0$ Stable: $K_M = k u_* z (1 + C_u z / L)^{-1} \sim u_* L \Rightarrow z_{0u} \sim L$ Unstable: $K_M = k u_* z + C_U^{-1} F_b^{1/3} z^{4/3} \sim F_b^{1/3} z^{4/3} \Rightarrow z_{0u} \sim h_0 (-h_0 / L)^{1/3}$

Recommended formulation

Neutral ⇔ unstable

Constants: $C_{SS} = 8.13 \pm 0.21$, $C_{US} = 1.24 \pm 0.05$

Experimental datasets

Sodankyla Meteorological Observatory, Boreal forest (FMI)

h \approx 13 m, measurement levels 23, 25, 47 m

BUBBLE urban BL experiment, Basel, Sperrstrasse (Rotach et al., 2004)

 $h \approx 14.6$ m, measurement levels 3.6, 11.3, 14.7, 17.9, 22.4, 31.7 m

Bin-average values of z_0 / z_{0u} (neutral- over actual-roughness lengths) versus h_0/L in stable stratification for Boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is z_0 / z_{0u} =1+8.13 h_0 / L .

Bin-average values of z_{0u} / z_0 (actual- over neutral-roughness lengths) versus h_0/L in stable stratification for boreal forest (h_0 =13.5 m; z_0 =1.1±0.3 m). Bars are standard errors; the curve is $z_{0u} / z_0 = (1+8.13h_0 / L)^{-1}$.

The curve is
$$d_{0u} / d_0 = 1 + 0.5(h_0 / L)(1.05 + h_0 / L)^{-1}$$

Convective eddies extend in the vertical causing $z_0 > z_{0u}$

VOLUME 81, NUMBER 5 PHYSICAL REVIEW LETTERS 3 AUGUST 1998 Y.-B. Du and P. Tong, Enhanced Heat Transport in Turbulent Convection over a Rough Surface

(b)

(a)

Unstable stratification, Basel, z_0/z_{0u} vs. Ri = $(gh_0/\Theta_{32})(\Theta_{18}-\Theta_{32})/(U_{32})^2$ Building height =14.6 m, neutral roughness z_0 =1.2 m; BUBBLE, Rotach et al., 2005). h_0/L through empirical dependence on Ri on (next figure) The curve $(z_0/z_{0u} = 1+5.31 \text{Ri}^{6/13})$ confirms theoretical $z_{0u}/z_0 = 1 + 1.15(h_0/-L)^{1/3}$

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Displacement height in unstable stratification (Basel): $d_0 / d_{ou} - 1$ versus Ri

The line confirms theoretical dependence: $d_{0u} = \frac{d_0}{1 + C_{DC} (h_0 / -L)^{1/3}}$

University of Helsinki

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

STABILITY DEPENDENCE OF THE ROUGHNESS LENGTH

in the "meteorological interval" -10 < h_0/L <10 after new theory and experimental data <u>Solid line</u>: z_{0u}/z_0 versus h_0/L <u>Thin line</u>: traditional formulation $z_{0u} = z_0$

STABILITY DEPENDENCE OF THE DISPLACEMENT HEIGHTin the "meteorological interval" $-10 < h_0/L < 10$ after new theory and experimental dataSolid line: d_{0u}/d_0 versus h_0/L Dashed line: the upper limit: $d_0 = h_0$

Conclusions (roughness & displacement)

- Traditional: roughness length and displacement height fully characterised by geometric features of the surface
- New: essential dependence on hydrostatic stability especially in stable stratification
- Logarithmic intervals in the velocity profiles diminish over very rough surfaces in both very stable and very unstable stratification
- Applications: to urban and terrestrial-ecosystem meteorology
- Especially: urban air pollution episodes in very stable stratification

