Near-surface parametrizations in HIRLAM

Laura Rontu, FMI
laura rontu@fmi.fi

June 17, 2008
Contents

Introduction
Schemes under development
Comparison examples
Concluding remarks
Dynamical core

Data assimilation

Convection: shallow, deep

Clouds and condensation

Turbulent fluxes:
 heat
 moisture
 momentum

Radiation fluxes

Orographic momentum fluxes

Soil/Ground

Heat and moisture fluxes in soil

Atmosphere

Surface layer

Heat and moisture fluxes in soil
Surface properties and problems in NWP models
Surface properties and problems in NWP models

Constant in time properties, e.g.

- Surface elevation
- Soil/ground consistence
- Fields given in physiography (climate) files
Surface properties and problems in NWP models

Constant in time properties, e.g.
- Surface elevation
- Soil/ground consistence
- Fields given in physiography (climate) files

Slowly varying properties/soil climatology, e.g.
- Leaf area index
- Deep soil temperature
- Fields given in monthly physiography (climate) files
Surface properties and problems in NWP models

Constant in time properties, e.g.
- Surface elevation
- Soil/ground consistence
- Fields given in physiography (climate) files

Slowly varying properties/soil climatology, e.g.
- Leaf area index
- Deep soil temperature
- Fields given in monthly physiography (climate) files

Analysed properties, e.g.
- Snow depth
- SST ⇒ sea ice cover
- Fields in model analysis and forecast files
Surface properties and problems in NWP models

Constant in time properties, e.g.
- Surface elevation
- Soil/ground consistence
- Fields given in physiography (climate) files

Slowly varying properties/soil climatology, e.g.
- Leaf area index
- Deep soil temperature
- Fields given in monthly physiography (climate) files

Analysed properties, e.g.
- Snow depth
- SST \Rightarrow sea ice cover
- Fields in model analysis and forecast files

Analysed and predicted properties, e.g.
- Snow depth, snow density
- Lake temperature \Rightarrow lake ice cover
- Fields in model analysis and forecast files
Example from Vatjajökull, Iceland
Surface properties and problems
Surface properties and problems

Surface roughness

- Depends of surface type (forest, ice, snow on surface ...)
- Momentum and heat/moisture roughness
- Orographic roughness?
- Stability dependency of roughness and stability functions?
Surface properties and problems

Surface roughness
- Depends of surface type (forest, ice, snow on surface ...)
- Momentum and heat/moisture roughness
- Orographic roughness?
- Stability dependency of roughness and stability functions?

Snow and its influence
- Influences surface/ground heat flux to atmosphere
- Modifies albedo, emissivity, roughness ...
- Snow on ice, snow on trees, permanent snow/ice?
Schemes under development
Schemes under development

Newsnow

- Advanced treatment of soil and surface layer processes especially over snow/ice and in forest
- Based on ISBA, tiled and with heat diffusion in soil
- Samuelsson et al, 2006. The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3).

SMHI, Meteorologi 122
Schemes under development

Newsnow

- Advanced treatment of soil and surface layer processes especially over snow/ice and in forest
- Based on ISBA, tiled and with heat diffusion in soil
- Samuelsson et al, 2006. The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3).

SMHI, Meteorologi 122

QNSE - Quasi-normal scale elimination

- Advanced theory leading to new stability functions for ISBA and CBR
- Fragmentary implementation in HIRLAM has been removed
Schemes under development

Newsnow

- Advanced treatment of soil and surface layer processes especially over snow/ice and in forest
- Based on ISBA, tiled and with heat diffusion in soil
- Samuelsson et al, 2006. The land-surface scheme of the Rossby Centre regional atmospheric climate model (RCA3).
 SMHI, Meteorologi 122

QNSE - Quasi-normal scale elimination

- Advanced theory leading to new stability functions for ISBA and CBR
- Fragmentary implementation in HIRLAM has been removed

Alternative for turbulence

- Tuning of coefficients related to surface exchange
- Removal of surface turbulent stress turning
- De Bruijn and Tijm, 2008. Overall tuning of the turbulence scheme of HIRLAM with the focus on the stable boundary layer. HIRLAM Newsletter 53
Orographic-related new parametrizations
Orography-related new parametrizations

MSO/SSO - Meso-scale and small-scale orography effects

- Wave and form drag due to hills and mountains
- (Enhanced) orographic roughness removed everywhere
- MSO based on Meteo France GWD parametrizations

- Rontu, 2006. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus, 58A
Orography-related new parametrizations

MSO/SSO - Meso-scale and small-scale orography effects

- Wave and form drag due to hills and mountains
- (Enhanced) orographic roughness removed everywhere
- MSO based on Meteo France GWD parametrizations

Rontu, 2006. A study on parametrization of orography-related momentum fluxes in a synoptic-scale NWP model. Tellus, 58A

Orographic effects on radiation

- Radiation on sloping surfaces

January 2007 Sodankylä: HIRLAM reference a year ago

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient Ts-Tnlev mast/Hirlam
January 2007 Sodankylä: HIRLAM “newsnow” a year ago

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient Ts-Tnlev mast/Hirlam
January 2007 Sodankylä: HIRLAM “newsnow” +oro+qnse

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient T2m-Tnlev mast/Hirlam
January 2007 Sodankylä: HIRLAM “newsnow” no oro no qnse

Temperature AWS 2m/Hirlam 2m

Temperature mast 31m/Hirlam 32m

Temperature gradient T2m-Tnlev mast/Hirlam
HIRLAM “newsnow” experiments

Table 1: HIRLAM experiment properties

<table>
<thead>
<tr>
<th>HIRLAM versions</th>
<th>Northern domain</th>
<th>East Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>resolution</td>
<td>“newsnow” before Easter 17km/60L</td>
<td>“newsnow” before Easter 11km/60L</td>
</tr>
<tr>
<td>period</td>
<td>January 1-15, 2007</td>
<td>April 1-10, 2006</td>
</tr>
<tr>
<td>domain</td>
<td>North Atlantic-European</td>
<td>Tanzanian</td>
</tr>
<tr>
<td>initial analysis</td>
<td>3DVAR STRACO for condensation</td>
<td>interpolated ECMWF (climate mode)</td>
</tr>
<tr>
<td>parametrizations</td>
<td>ECMWF analysis</td>
<td>STRACO for condensation</td>
</tr>
<tr>
<td>boundaries</td>
<td>HARMONIE tools + Sodankylä</td>
<td>ECMWF analysis</td>
</tr>
<tr>
<td>validation</td>
<td>HARMONIE tools</td>
<td>HARMONIE tools</td>
</tr>
</tbody>
</table>

Table 2: Experiment names

<table>
<thead>
<tr>
<th>MSO/SSO/Radoro</th>
<th>QNSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OROSUR</td>
<td>ON</td>
</tr>
<tr>
<td>NO QNSE</td>
<td>ON</td>
</tr>
<tr>
<td>NO ORO</td>
<td>OFF</td>
</tr>
<tr>
<td>AFRICA</td>
<td>ON</td>
</tr>
</tbody>
</table>

Summary of the forecast-observation bias

Table 3:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>10m Wind</th>
<th>2m Temperature</th>
<th>sfc. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
<td>Mountain</td>
<td>ALL</td>
</tr>
<tr>
<td>OROSUR</td>
<td>0.72</td>
<td>0.12</td>
<td>-0.40</td>
</tr>
<tr>
<td>NO QNSE</td>
<td>0.60</td>
<td>0.02</td>
<td>-1.00</td>
</tr>
<tr>
<td>NO ORO</td>
<td>0.33</td>
<td>-0.83</td>
<td>-1.05</td>
</tr>
</tbody>
</table>

Summary of the forecast-observation bias

Table 3:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>10m Wind</th>
<th>2m Temperature</th>
<th>sfc. pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL</td>
<td>Mountain</td>
<td>ALL</td>
</tr>
<tr>
<td>ORO SUR</td>
<td>0.72</td>
<td>0.12</td>
<td>-0.40</td>
</tr>
<tr>
<td>NO QNSE</td>
<td>0.60</td>
<td>0.02</td>
<td>-1.00</td>
</tr>
<tr>
<td>NO ORO</td>
<td>0.33</td>
<td>-0.83</td>
<td>-1.05</td>
</tr>
</tbody>
</table>

Quick conclusions

- oroparametrizations + QNSE are good for temperatures everywhere
- oroparametrizations + tuned turbulence are good for mountain winds
- tuned turbulence without oroparametrizations are good for winds over the whole domain and for pressure everywhere
- (not shown) no significant differences from 925 hPa upwards
Concluding remarks (from ASM08 presentation)
Concluding remarks (from ASM08 presentation)

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation
Concluding remarks (from ASM08 presentation)

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation

It is not easy to improve model by physical parametrizations

- Significant positive-only signals are not so common nowadays
- The amount of possible combinations is increasing - supermarket?
 Optimized code combinations for different usage?
- The best schemes and combinations are those with the least amount of coding errors?
- Methods of code development and implementation require attention
 in the HIRLAM-HARMONIE framework
Concluding remarks (from ASM08 presentation)

Did we learn something from this study?

- Schemes are better for some parameters and domains, worse for others
 - no clear winners
- There is a need to improve, tune, combine different aspects
 of all these schemes and their implementation

It is not easy to improve model by physical parametrizations

- Significant positive-only signals are not so common nowadays
- The amount of possible combinations is increasing - supermarket?
 - Optimized code combinations for different usage?
- The best schemes and combinations are those with the least amount of coding errors?
- Methods of code development and implementation require attention
 in the HIRLAM-HARMONIE framework

Things to study and develop further

- Consistent implementation of QNSE functions
 (switchable on/off) and a sensitivity study
- Connections between the surface layer and the whole boundary layer
- Removal of the effective roughness - main influence outside of mountains?
- Behaviour of and parametrization of the (orographic) buoyancy waves in the boundary layer
Thanks to

Stefan Gollvik (SMHI), Jevgeni Atlaskin (RSHU)
Story of QNSE implementation & removal in HIRLAM
Story of QNSE implementation & removal in HIRLAM

QNSE functions in VCBR turbulence scheme

- Early 1D-3D implementation into (dry) CBR scheme in Sweden, testing by V.Perov et al.
- Implementation into HIRLAM moist CBR within development versions (“trunk” and “newsnow”)
- Tuning of coefficients (with a small error), QNSE bundled with modified length-scale formulation
- Functions active in unstable/stable stratification
Story of QNSE implementation & removal in HIRLAM

QNSE functions in VCBR turbulence scheme

- Early 1D-3D implementation into (dry) CBR scheme in Sweden, testing by V. Perov et al.
- Implementation into HIRLAM moist CBR within development versions ("trunk" and "newsnow")
- Tuning of coefficients (with a small error), QNSE bundled with modified length-scale formulation
- Functions active in unstable/stable stratification

QNSE functions in the surface layer

- Implementation into "newsnow" over open land and sea ice - no forest, no sea
- No QNSE in "trunk" surface layer!
- Functions active in stable stratification only
Story of QNSE implementation & removal in HIRLAM

QNSE functions in VCBR turbulence scheme

- Early 1D-3D implementation into (dry) CBR scheme in Sweden, testing by V.Perov et al.
- Implementation into HIRLAM moist CBR within development versions ("trunk" and "newsnow")
- Tuning of coefficients (with a small error), QNSE bundled with modified length-scale formulation
- Functions active in unstable/stable stratification

QNSE functions in the surface layer

- Implementation into "newsnow" over open land and sea ice - no forest, no sea
- No QNSE in "trunk" surface layer!
- Functions active in stable stratification only

Step back: remove to allow better configuration and systematic comparison