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QNSE-based eddy viscosities and diffusivities
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Source: Phys. Fluids, Sukoriansky et al. 2005.



Curve fitting functions

For implementation in PBL schemes, the theoretically
derived stability functions, a,,=K,,/K, and a,=K/ /K, , were
approximated by a fraction-polynomial fit (K, is the eddy
viscosity at Ri=0):
~ 1+8Ri°
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The fitting functions are valid for Ri<1.5. For larger
values, flux Richardson number R; approaches limiting

value <0.5



Unstable stratification (Convection)
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CBR-based K-l model
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QNSE-based K-l model
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QNSE-based surface layer parameterization

Using theoretically derived stability functions a,,, o, and
approximations of constant flux layer, there were derived
the drag coefficients for momentum and heat, C,, C,, that
replace the Louis formulation. The corresponding
expressions are:

C, = - =12l &=1lL
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v (¢)=2.25¢ -0.2¢°

v (£)=2Pr ¢ +0.1(¢ — 0.5 —0.5°)
Pr, = 0.71— turbulentPrandtl number for neutral flow



Testing of the model - neutral ABL
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Testing of the HIRLAM — BASE

Case description
Vertical domain = 400m

Initial state: ® = 265K < 100 metres
de/dz = -0.01K/m > 100 metres

U, = 8 m/s
V= 0 m/s

9 hours run: dO./dz = -0.25/h
Z,=0.1m



Testing in HIRLAM - BASE
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Testing in HIRLAM - BASE
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Height (m)
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Testing in HIRLAM - BASE
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Testing in HIRLAM - BASE
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Testing in WRF - BASE

Full QNSE-based parameterization
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QNSE surface scheme eliminates warm temperature bias in BASE case. With
other schemes in WRF, increase in resolution may improve the bias but does
not eliminate it.



Conventional models suffer from the warm bias when used to predict 2m
temperature at Sodankyla station in Finland and in other Nordic regions. Large
warm bias occurs for very low near-surface temperatures (-25°C and lower).
This problem has been notoriously well-known as the Nordic Temperature

Problem.
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Predictions of the 2-m temperature at Sodankyla station by a reference
HIRLAM model. Red line is the data; color symbols and color lines show

various 24-hour predictions.



NTP solution in HIRLAM

Advanced parameterization in the Surface Biosphere
Atmosphere Interaction (ISBA) scheme

= Improved treatment of the snow/ice and the forest
= Tiling + heat diffusion in the soil

= Samuelson et al., 2006. The land surface scheme of the Rossby Centre
regional atmospheric climate model (RCA3). SMHI, Meteorologi 122

Implementation of QNSE-based drag coefficients in ISBA
scheme (and in the turbulence K-l scheme in future)
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Conclusions

The quasi-normal scale elimination model has been implemented
in HIRLAM TKE-I and advanced ISBA scheme schemes, as well as
in WRF turbulence closure schemes

Single column experiments reveal good agreement between
model’s results, LES and observations for different resolutions

QNSE model was used to derive the universal stability functions
in the Monin-Obukhoyv theory which were implemented in the
new surface layer parameterization that replaced the Louise
scheme

New QNSE-based drag coefficients have been implemented in 3D
“newsnow” surface atmosphere biosphere interaction scheme of
HIRLAM

Preliminary comparisons of 3D HIRLAM with Sodankyla Mast
measurements have shown much improvement of T2m forecasts
with QNSE-based modifications and advanced “newsnow”
scheme

QNSE turbulence models are a viable alternative to Reynolds
stress closure schemes
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